摘要:随着量子计算的进步,人们进行了广泛的研究以寻找密码学领域的量子优势。将量子算法与经典密码分析方法(如差分密码分析和线性密码分析)相结合,有可能降低复杂性。在本文中,我们提出了一种用于差分密码分析的量子差分查找电路。在我们的量子电路中,明文和输入差分都处于叠加态。实际上,虽然我们的方法无法通过量子计算实现直接加速,但它通过依赖叠加态中的量子概率提供了不同的视角。对于量子模拟,考虑到量子比特的数量有限,我们通过实现 Toy-ASCON 量子电路来模拟我们的量子电路。
现代科学和社会中大多数问题的极端复杂性对我们最好的理论和计算方法提出了非常巨大的挑战。作为一个例子,即使是最强大的超级计算机,也可以基于流动运动方程的直接模拟来预测行星尺度上天气的任务前面的Exascale操作(每秒10亿个流量点操作)。此外,这个和类似的问题通常受到影响解决方案的初始数据和其他参数引起的各种不确定性来源。因此,每个案例研究都需要几个实现,以积累足够的统计信息(集合模拟),从而进一步加强了对计算能力的追求。鉴于电子计算机面临着非常严格的能量限制,因此不断寻求替代模拟策略。在过去的十年中,巨大的效果已经专门用于量子计算机的开发,使用能够利用量子系统同时占据众多状态的硬件设备(量子纠缠)。直接优势是,量子系统原则上可以执行多种并行量子计算,而不是只能在二元状态下运行的经典计算机(位)。最近,没有一天没有
摘要我们使用量子兰科斯(qlanczos)算法在IBM Q Quantum Compertical Comperty Hardwardwear上实现了集体振荡系统的中微子系统的能量水平。我们的计算基于Patwardhan等人引入的多体性中微子相互作用。(Phys Rev D 99,https:// doi。org/10.1103/physrevd.99.123013,2019)。我们表明,哈密顿系统可以分为较小的块,可以使用比将整个系统表示为一个单元所需的量子量较少,从而减少了量子硬件上实现的噪声。我们还使用Trotterterization方法计算集体中微子振荡的过渡概率,该方法在随后在硬件上实现之前就可以简化。这些计算表明,集体中微子系统和集体中微子振荡的能量特征值都可以在量子硬件上使用一定的简化来计算,以符合与确切结果的良好一致性。
除了提供比我们之前的混合求解器更好的性能之外,该求解器还首次提高了开发人员在我们的量子计算机上构建应用程序的抽象级别。具体来说,如果你是一名数据科学家或数据分析师,并且习惯于使用线性规划、二次规划或混合整数规划来构建应用程序,那么我们的新混合求解器现在可以采用这些应用程序模型,并自动将它们映射到量子计算机。
1. Hagiwara, H.、Yamashita, Y.、Yagi, S. 等人。经鼻内镜在多中心个体胃癌筛查中的现状及准确性。 J Cancer Screening 2009;47:683-92。2. Menon S、Trudgill N。内镜检查漏诊上消化道癌的可能性有多大?一项荟萃分析。Endosc Int Open 2014;2:E46-50。3. Kumar S、Thosani N、Ladabaum U 等人。3 分钟与 6 分钟结肠镜检查停药时间相关的腺瘤漏诊率:一项前瞻性随机试验。Gastrointest Endosc 2017;85:1273-80。4. Robertson DJ、Lieberman DA、Winawer SJ 等人。结肠镜检查后不久发现的结直肠癌:一项汇总多队列分析。Gut 2014;63:949-56。5. Ladabaum U、Fioritto A、Mitani A 等人。社区实践中窄带图像老化的结肠息肉实时光学活检尚未达到临床决策的关键阈值。胃肠病学 2013;144:81-91。6. 下一代医疗器械评估指标公布(药品上市通知第 0523-2 号,2019 年 5 月 23 日)。 7.《关于修订《药品、医疗器械等质量、功效和安全保障法》的法案》(2019年第63号法案)。 8. 有关程序对医疗器械的适用性的基本原则(2014年11月14日役所官发第1114-5号) 9. Takemura Y, Yoshida S, Tanaka S 等. 定量分析及开发计算机辅助系统以识别结直肠病变的规则小凹模式. Gastrointest Endosc 2010;72:1047-51. 10. Kominami Y, Yoshida S, Tanaka S 等. 利用实时图像识别系统和窄带成像放大结肠镜对结直肠息肉组织学进行计算机辅助诊断. Gastrointest Endosc 2015;83:643-9. 11. Byrne MF, Chapados N, Soudan F 等. 利用深部增强扫描对标准结肠镜检查未改变的视频进行分析以实时区分腺瘤性和增生性小结直肠息肉
说明··········································································································································································································· 59
- (sign-based signature) CROSS, Enhanced pqsigRM, FuLeeca, LESS, MEDS, Wave (homogeneous map signature) SQIsign (lattice-based signature) EagleSign, EHTv3 and EHTv4, HAETAE, HAWK, HuFu, Raccoon, SQUIRRELS (MPC-in-the-Head signature) Biscuit, MIRA, MiRitH, MQOM, PERK, RYDE, SDitH (multivariable signature) 3WISE, DME-Sign, HPPC, MAYO, PROV, QR-UOV, SNOVA, TUOV, UOV, VOX (symmetric base signatures) AIMer, Ascon-Sign, FAEST, SPHINCS-alpha (other signatures) ALTEQ, eMLE-Sig 2.0, KAZ-SIGN, Preon, Xifrat1-Sign.I
Viper MLV / MLV II 在严苛的航线环境中拥有 20 年的可靠性和耐用性。BAE Systems 不断开发和集成新功能,以支持 F-16 的所有 Block/版本,包括新型 F-16V 和 Block 70 F-16。Viper MLV / MLV II 支持 100 多个 F-16 航空电子系统,为整个 FMS 和美国空军 F-16 用户社区提供功能更新,而开发成本仅为独立系统的一小部分。我们通过识别复杂需求和开发独特的软件和硬件解决方案来满足客户需求。新型 Viper MLV II 提供网络强化硬件架构,确保长期的 F-16 航空电子设备支持。
电池深部排放保护设备,电压放电指示器,具有低压自动切割和效力功能,可用于更高的电池寿命。证明的紧急开关和电压放电指示器,使其更耐用和可靠。指示器通过CAN-BUS显示故障,无需删除指示外壳。
1.输入材料编号:无通配符 (*) 2.输入 LIN:全部大写,无通配符 (*) 3.输入材料描述:全部大写,建议在输入的文本前后使用通配符 (*)。例如,*TANK* 4.输入 ACOM:全部大写,可选的辅助排序标准 5.输入工厂:(2000 或 2001) 6.输入城市:全部大写,可选的辅助排序标准 7.输入州:两个字符的缩写。全部大写,可选的次要排序标准 8。输入供应类别:单个数字,可选的次要排序标准 9。如果不确定输入 4、5、6、7 的可选搜索标准的正确方法,请在此处输入并单击 ,此搜索功能将创建正确格式的匹配列表 10。单击按钮呈现报告