我们提出了一个精确可解的玩具模型,用于 N 个量子比特的置换不变图状态的连续耗散动力学。此类状态局部等效于 N 个量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态,后者是许多量子信息处理装置中的基本资源。我们重点研究由 Lindblad 主方程控制的状态的时间演化,该方程具有三个标准单量子比特跳跃算子,哈密顿量部分设置为零。通过推导出在 Pauli 基中随时展开的可观测量的期望值的解析表达式,我们分析了非平凡的中间时间动力学。使用基于矩阵乘积算子的数值求解器,我们模拟了最多 64 个量子比特的系统的时间演化,并验证了数值上与解析结果的精确一致性。我们发现,系统二分算子空间纠缠熵的演化呈现出一个平台期,其持续时间随着量子比特的数量呈对数增加,而所有泡利算子积的期望值最多在常数时间内衰减。
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'
在 Bloch 球面图中,我们可以根据恒等矩阵和泡利矩阵来展开单量子比特密度算子的系数。通过张量积推广到 n 个量子比特,密度算子可以用长度为 4 n 的实向量表示,在概念上类似于状态向量。在这里,我们研究这种方法以进行量子电路模拟,包括噪声处理。张量结构可实现计算高效的算法,用于应用电路门和执行少量子比特量子操作。针对变分电路优化,我们研究通过量子电路的“反向传播”和基于这种表示的梯度计算,并将我们的分析推广到林德布拉德方程,以建模密度算子的(非幺正)时间演化。
我们可以更一般地为任何半正定算子 P 定义该函数,以代替密度算子 ρ ,但我们的重点将放在第一个参数为密度算子的情况。考虑量子相对熵的一种方法是,它表示以比特为单位的效率损失,当一个人提前计划 Q 但却收到 ρ 时,就会产生这种损失。这是非常不正式的,不应太当真,但我们将允许这种直观的描述来提出一些有用的术语:为了方便起见,我们将量子相对熵中的第二个参数 Q 称为模型,将第一个参数 ρ 称为实际状态。无论我们如何选择解释量子相对熵函数,都不能否认它作为“辅助函数”的巨大效用,通过它可以定义和分析基本熵量。特别是,条件量子熵和量子互信息在
摘要 本文从所有可能的角度研究了向量空间中的线性伊藤随机微分方程。在这种情况下,势向量描述了作用于量子系统的经典噪声的大小。该向量势可以表示为其参数的线性函数,其中厄米算子作为其系数,因为其参数被假定为未知的。对于二阶扰动,可以借助势扰动参数确定幺正演化算子。至于第二项,它写成关于布朗运动的双迭代随机积分,而第一项写成伊藤随机积分。在控制量子系统时,来自环境的噪声可能是一个主要障碍;这种技术可以提供帮助。通过学习检测和调节噪声,提高计算机等量子技术的可靠性和实用性。如果势的参数受到噪声的影响,那么它们的可靠性就会降低。我们重点关注特殊情况,即势能是这些参数的线性函数,以厄米算子为系数。为了找到达到 O ( ǫ ) 的幺正演化算子,我们可以将 O ( ǫ ) 项写为关于布朗运动的伊藤随机积分,将 O ( ǫ 2 ) 项写为关于布朗运动的双迭代随机积分。
局部和时间周期动力学与随机幺正有多相似?在本研究中,我们使用量子计算中的 Clifford 形式来解决这个问题。我们分析了一个无序的 Floquet 模型,该模型的特点是在一个空间维度中存在一系列局部、时间周期和随机量子电路。我们观察到,演化算子在周期的半整数倍时享有额外的对称性。据此,我们证明,在扰乱时间之后,即当任何初始扰动传播到整个系统时,当所有量子位都用 Pauli 算子测量时,演化算子无法与 (Haar) 随机幺正区分开来。这种不可区分性随着时间的推移而降低,这与更受研究的 (时间相关) 随机电路的情况形成了鲜明对比。我们还证明了 Pauli 算子的演化表现出一种混合形式。这些结果要求局部子系统的维度很大。在相反的状态下,我们的系统显示出一种新颖的局部化形式,它是由有效的单侧壁产生的,它可以防止扰动从一个方向穿过侧壁,但不能从另一个方向穿过侧壁。
新开设的课程: 课程名称:算子理论和算子代数 课程:博士(数学) 讲师:Harsh Trivedi 博士和 Ratan Giri 博士 学习目标:这是一门入门课程。它可应用于数学研究的几个领域,包括微分方程、量子统计力学、量子信息论和数学物理。它主要面向希望在算子理论、算子代数和相关领域进行研究的学生。 课程名称:李代数 课程:博士(数学) 讲师:Ashish Mishra 博士 学习目标:本课程介绍李代数理论。我们的目标是研究有限维复半单李代数的结构及其表示理论。李代数是一个重要的研究领域,在数学的各个领域有着广泛的应用,例如微分几何、组合学、数论、微分方程,以及物理学的许多领域,如量子力学和粒子物理学。为了给学生提供学习李代数高级主题的背景知识,本课程将从模块理论的介绍开始,特别介绍模块的张量积和张量代数的主题。本课程主要面向希望在李代数和相关领域进行研究的学生。
近年来,随着硬件和软件技术的进步,高性能计算取得了长足的发展。计算机的性能按照摩尔定律不断提高,但似乎在不久的将来就会达到极限。量子计算机有可能大大超越经典计算机的性能,因此成为研究的焦点。本研究从理论角度和模拟实现两个方面探讨了经典随机游动与量子游动的区别,并探讨了量子游动在未来的适用性。概述了经典随机游动和量子游动的基本理论,并根据经典随机游动和量子游动的行为和概率分布,比较了它们之间的特征差异。同时,我们使用Qiskit作为量子模拟器实现了量子行走。表示量子行走的量子电路主要由硬币算子、移位算子和量子测量三部分组成。硬币算子表示量子行走中的抛硬币,这里我们使用了Hadamard算子。移位算子表示根据硬币算子的结果进行量子行走的移动。量子测量是提取量子比特的量子态的过程。在一维量子行走中,我们准备了四种情况,作为从两个到五个量子比特位置的量子比特数的差异。在所有情况下,都已看到量子行走的成功实现,这与量子比特的数量和初始状态的差异有关。然后,我们广泛研究了二维量子行走的实现。在二维量子行走中,就每个 x 和 y 坐标位置的量子比特数量而言,准备了三种情况,从两个到四个量子比特。虽然与一维情况相比,问题设置的复杂性大大增加,但可以看出量子行走实现的成功。我们还看到,量子行走的行为和概率分布的扩展在很大程度上取决于初始硬币状态和初始位置的初始条件。本研究证明了量子行走作为解决未来广泛应用中复杂问题的工具的适用性。最后,我们给出了本研究的可能观点和未来展望。
在基于酉门的量子设备上实现非酉变换对于模拟各种物理问题(包括开放量子系统和次归一化量子态)至关重要。我们提出了一种基于膨胀的算法,使用仅具有一个辅助量子位的概率量子计算来模拟非酉运算。我们利用奇异值分解 (SVD) 将任何一般量子算子分解为两个酉算子和一个对角非酉算子的乘积,我们表明这可以通过 1 量子位膨胀空间中的对角酉算子来实现。虽然膨胀技术增加了计算中的量子位数,从而增加了门的复杂性,但我们的算法将膨胀空间中所需的操作限制为具有已知电路分解的对角酉算子。我们使用此算法在高保真度的量子设备上准备随机次归一化两级状态。此外,我们展示了在量子设备上计算的失相通道和振幅衰减通道中两级开放量子系统的精确非幺正动力学。当 SVD 可以轻松计算时,所提出的算法对于实现一般的非幺正运算最为有用,在嘈杂的中型量子计算时代,大多数运算符都是这种情况。
我们针对定义在强连通有向图(有向图)顶点上的函数引入了一种新颖的谐波分析,其中随机游走算子是其基石。首先,我们将随机游走算子的特征向量集视为有向图上函数的非正交傅里叶型基。我们通过将从其狄利克雷能量获得的随机游走算子的特征向量变化与其相关特征值的实部联系起来,找到了一种频率解释。从这个傅里叶基开始,我们可以进一步进行并建立有向图的多尺度分析。我们提出了一种冗余小波变换和抽取小波变换,分别作为有向图的谱图小波和扩散小波框架的扩展。因此,我们对有向图的谐波分析的发展使我们考虑应用于有向图的半监督学习问题和图上的信号建模问题,突出了我们框架的效率。