储能提供了一种有效的转移时间能源需求和供应的方法,这可以在分时电价计划下显著降低成本。尽管储能具有巨大的优势,但目前的储能成本仍然昂贵,这对实际部署构成了重大障碍。提高成本效益的更可行的解决方案是共享储能,例如社区共享、云储能和点对点共享。然而,向外部储能运营商透露私人能源需求数据可能会损害用户隐私,并且容易受到数据滥用和泄露的影响。在本文中,我们探索了一种基于隐私保护区块链和安全多方计算来支持具有隐私保护的储能共享的新方法。我们提出了一种集成解决方案来实现隐私保护的储能共享,这样就可以在不了解个人用户需求的情况下实现储能服务调度和成本分摊。它还支持电网运营商通过区块链进行审计和验证。此外,我们的隐私保护解决方案可以防止大多数不诚实的用户串通作弊,而无需可信的第三方。我们在现实世界的以太坊区块链平台上将我们的解决方案作为智能合约实现,并在本文中提供了实证评估 1 。
我们介绍 SPARC:用于从头算实空间计算的模拟包。SPARC 可以在静态和动态设置中对孤立系统(例如分子)以及扩展系统(例如晶体和表面)执行 Kohn-Sham 密度泛函理论计算。它安装/使用简单,与最先进的平面波代码具有很强的竞争力,在少数处理器上表现出可比的性能,并且随着处理器数量的增加而具有越来越大的优势。值得注意的是,SPARC 将大型并行计算机上具有 O(100-500)个原子的系统的求解时间缩短到几秒钟,比平面波同类产品高出一个数量级甚至更多。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
特别欢迎我们杰出的主旨发言人:David Turk 和 Ranae Woods。David Turk 是美国能源部副部长,位于华盛顿特区。在 Turk 先生被提名之前,他曾担任国际能源署 (IEA) 副执行干事,主要负责帮助世界各国实现清洁能源转型。Ranae Woods 是成本和经济分析研究技术总监、空军成本分析局、成本和经济副助理部长、空军财务管理兼主计长助理办公室,位于华盛顿特区。Woods 女士在其整个职业生涯中一直在成本分析和工业工程领域为空军和海军提供支持。LANL 热烈欢迎我们的主旨发言人,并代表 LANL 和 CECOP 感谢他们参加本次活动。
摘要 — 当涉及过载等情况时,由按需设备(包括辅助服务器)组成的关键基础设施就会发挥作用。按需服务器和设备需要智能管理解决方案,这些解决方案是人工智能物联网 (AIoT) 不可或缺的一部分。这项工作将 AIoT 视为移动物联网 (M-IoT) 和人工智能的结合,需要立即响应、辅助支持系统和计算资源。在共享信息时,AIoT 中的隐私始终是一个问题,因为入侵者可以窃听系统的设置。本文使用渗透计算范式,该范式可以推导策略来决定通过 AIoT 中的最佳和隐私感知资源管理共享服务的方法。安全竞争建立在配置奖励之上,有助于实现隐私设计。这项工作的贡献通过理论分析和数值模拟来表达。
摘要 — 将高级量子程序编译到大小受限(即量子比特数量有限)和时间受限(即量子操作数量有限)的机器中是一项挑战。在本文中,我们介绍了 SQUARE(战略量子辅助重用),这是一种编译基础架构,用于解决模块化量子程序中临时量子比特(称为辅助)的分配和回收问题。SQUARE 的核心是战略性地执行非计算以创造量子比特重用的机会。当前的嘈杂中型量子 (NISQ) 计算机和前瞻性的容错 (FT) 量子计算机具有根本不同的约束,例如数据局部性、指令并行性和通信开销。我们基于启发式的辅助重用算法平衡了这些考虑因素,并将计算纳入资源受限的 NISQ 或 FT 量子机,并在必要时限制并行性。为了精确捕获程序的工作量,我们提出了一个改进的指标,即“活动量子体积”,并使用该指标来评估我们算法的有效性。我们的结果表明,SQUARE 将 NISQ 应用程序的平均成功率提高了 1.47 倍。令人惊讶的是,用于未计算的额外门创建了具有更好局部性的辅助门,并导致交换门大大减少,总体上门噪声也更低。SQUARE 还实现了 FT 机器的活动量子体积平均减少 1.5 倍(最高 9.6 倍)。索引术语 — 量子计算、编译器优化、可逆逻辑综合
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
本文追溯了 Kuechemann 创办《航空航天科学进展》杂志 50 年来远程喷气式运输机的发展历程。本文特别关注跨音速空气动力学。在 Kuechemann 的一生中,人们对跨音速流动和后掠翼设计有了很好的定性理解,但跨音速流动仍然难以定量预测。在过去的 50 年里,随着复杂数值算法的引入和可用计算能力的惊人提升,这种情况已经完全改变,结果是空气动力学设计现在主要通过计算机模拟进行。此外,基于控制理论的气动形状优化的发展使得只需两次模拟就可以设计出具有竞争力的后掠翼,如本文所示。虽然远程喷气式飞机的外观没有太大变化,但信息技术的进步实际上已经通过计算机辅助设计 (CAD)、计算结构力学 (CSM) 和多学科优化 (MDO) 的同步进步改变了整个设计和制造过程。他们还通过采用数字电传操纵和先进的导航技术改变了飞机的运行。& 2011 Elsevier Ltd. 保留所有权利。
1949 年 4 月,在橡树岭举行的计算机会议上,计算机协会代表米娜·里斯和约翰·莫奇利建议在哈佛大学举行另一次研讨会,总结近期和当前的发展情况。计算实验室的工作人员在宣布完成 Mark III 计算器时已经考虑过这种可能性,并对里斯博士和莫奇利博士的建议感到高兴。因此,军械局再次受邀与哈佛大学联合主办第二次研讨会,重点讨论数字计算机的应用。根据第一次研讨会的经验,预计可能有三百人参加。七百多名参与者的响应清楚地表明了自动计算领域的发展速度。
1949 年 4 月,在橡树岭举行的计算机会议上,计算机协会代表 Mina Rees 和 John Mauchly 建议在哈佛举行另一次研讨会,总结最近和当前的发展。计算实验室的工作人员已经在宣布完成 Mark III 计算器时考虑了这种可能性,并对 Rees 博士和 Mauchly 博士的建议感到高兴。因此,军械局再次受邀与哈佛大学联合主办第二次研讨会,重点讨论数字计算机的应用。根据第一次研讨会的经验,预计可能有三百人参加。超过七百名参与者的响应清楚地表明了自动计算领域的发展速度。