摘要。食管癌(EC)是全球第八种最常见的癌症类型,在癌症相关死亡率的原因中排名第六。由于EC的死亡率高和治疗效率不佳,数百万个人屈服于这种疾病;因此,新型治疗目标的识别至关重要。近年来,如果针对细胞周期调节剂的疗法已经取得了进步。p21是一种在肿瘤细胞中起双重作用的细胞周期调节剂,因为它不仅可以调节细胞周期,诱导细胞凋亡并抑制细胞增殖,而且还可以保护细胞免受凋亡。已经发现,P21经常对EC施加肿瘤抑制作用,这为其用作EC的治疗靶标提供了基础。因此,本研究的目的是回顾P21的功能及其作为EC的治疗靶标的潜在价值。
在过去的几年中,基于Algan/GAN异质结构的设备因其物质特性而受到了极大的关注,包括宽带,高电子迁移率和二维电子气体(2DEG)的高密度,使其成为高功率和高频应用的最佳选择之一。然而,在散装或表面上存在几个不同性质的陷阱,阻碍了这些设备的性能,其行为的不良变化并限制了其可靠性[1]。捕获gan设备中的效果是显着的,这是两个有趣的原因。首先,它们可以通过捕获电子来耗尽2DEG,从而减少电流。第二,它们的缓慢性质会导致频率分散,从而限制了它们的动态性。最近,已经使用了多种技术来研究捕获机制的行为[2-4],这是由阻抗测量组成的最流行方法之一,允许查找电荷陷阱的激活能(E A)。晶体管中的表面和散装陷阱通常与经典的小信号等效电路并行或串联为RC电路建模,从而捕获设备输出阻抗的频率分散体。为了确定陷阱的参数,必须以广泛的温度(首先进行)进行AC表征,因为陷阱机制的影响在降低温度时会增加,其次,因为人们可以观察到电荷释放的热激活。
摘要。通信信息技术的进步使得各种基础设施依赖于控制论技术。然而,该系统也存在威胁。在国际人道主义法研究中讨论的威胁之一是控制论战争,它是由国家等高级实体进行。这种威胁与武装部队或军队协调,以获得对对手的优势。认识到对国家和民族主权的威胁不断演变且非常动态,在这种情况下,考虑到互联网技术的进步,政府制定了有关网络防御的法规,以努力克服对国防实施造成破坏的网络攻击,从而实现网络防御(网络防御)。总体而言,已经有许多国家法律和法规来管理与网络空间活动有关的事项。本文的研究方法采用规范法学研究法,收集并分析了网络战法规和信息法规两个主要概念的法律材料。法学研究的本质是对法律概念或法律现象提供规定。本文发现,《塔林手册》是一个指导如何应对网络攻击的法律概念,该概念可以在其中采用。同时,在网络战法规的法律真空中,《塔林手册》中的概念可以解释为印度尼西亚现行法律。本文的研究结果表明,根据现有法规,网络攻击可以分为三类,即:普通攻击、中程攻击或恐怖主义、群体攻击或网络战。
摘要:有关细菌多样性的信息,例如原牙根管中的每个物种的数量,有助于改善我们对原牙中牙髓牙齿起源感染的有效管理。这项研究使用荧光原位杂交(FISH)技术对原代牙齿的根管中的细菌进行了定性和定量评估。使用鱼类技术评估了31名儿童的果肉坏死的三十一颗原发性牙齿,以检测聚集的放线菌菌菌的存在和密度链球菌,链球菌突变,sobrinus链球菌,Tannerella Forsythia和treponema denticola。描述性措施解释了与密度有关的数据,根据症状和症状,学生的T检验评估了每个细菌密度之间的差异。将细菌密度配对并相关。在所有样品中检测并鉴定了所有测试的细菌。每个物种的细菌个体的平均数量范围从1.9 x 10 8细胞/ml(S. mutans)到3.1 x 10 8细胞/ml(F. nucleatum)(p> 0.05)。每个细菌的平均计数总和几乎占整个微生物群落的80%。患有疼痛的患者的牙霉菌明显更高,并且凝血肿的患者表现出更大的链球菌和尼非菌的密度(p <0.05)。这项研究表明,在所有牙髓坏死的所有初级牙齿中都发现了所有12种细菌。所研究的物种之间没有占主导地位。所有物种都有相似数量的个体。
充血反应 1,8,10,12,13,自从通过光谱学发现以来,引起了人们的浓厚兴趣 1,6,8–18。19 两种无标记成像技术,功能性磁共振成像 6,10,15–17 (fMRI) 和宽视野(反射模式)光学显微镜,1,11–14 都为理解初始下降做出了宝贵贡献。 fMRI 是目前神经成像的主流,它通过检测顺磁性脱氧血红蛋白,非侵入性地获得大脑皮层范围内的大脑功能映射。4,10 即使是用于小动物成像的小口径形式,fMRI 也缺乏空间分辨率来辨别直径 < 50 μ m 的脑微血管的动态,20 初始下降被认为是起源于此处。 8、10 理论上,宽视野光学显微镜具有足够的空间分辨率,但在分辨深层血管时,往返光学散射严重,对微小吸收变化的灵敏度低;21 它也缺乏深度分辨率。2 因此,初始倾角现象仍未得到充分探索。6、12、15
摘要 提出了一种用于纳米线晶体管 DC 和 RF 小信号模拟的数值框架,该框架基于泊松、薛定谔和玻尔兹曼传输方程的自洽解,并且在从弱到强粒子散射的整个范围内都是稳定的。所提出的方法不会因将玻尔兹曼传输方程变换到能量空间而产生缺陷,并且可以处理准弹道情况。这是研究等离子体共振和其他高迁移率现象的关键要求。内部求解器通过先前开发的基于 H 变换的模拟器的结果进行验证,该模拟器适用于具有强散射的传统 N + NN + 硅晶体管。然后,将其结果与基于矩的模型的结果进行比较,结果表明这些结果不能令人满意地描述准弹道传输状态下的电子动力学。此外,发现接触处传输模型的内部边界条件对等离子体共振有显著影响,而基于物理的热浴边界条件强烈抑制了它们。
h(t) 可以理解为来自 SAW 最小值的 EL 信号。因此,自相关直方图可以看作是一系列等距函数 J(∆t)=(h∗hmirror)(∆t) 的总和。图 S4(a) 显示了 τ = 0.2 和 w = 0.05 的 h(t) 的示例,而图 S4(b) 显示了镜像 hmirror(t)。它们的卷积 J(∆t) 绘制在图 S4(c) 中。这个单峰可以理解为图 S3 中各个峰的实际形状,这意味着即使这些峰之间存在明显的重叠,也可以单独评估特定峰的贡献。因此,如果已知 SAW 驱动的 EL 的理论函数 J(∆t),就可以更准确地估计来自抑制峰的真实信号,例如图 3(a) 中的抑制峰。从图 3(b) 中平均直方图的拟合结果可以看出,每个峰的形状由 J (∆ t ) 确定,其中 τ = 99.6 ps,w = 33 ps,BG g2 = 2.79。可以假设图 3(a) 中的每个峰具有相同的形状,但由于统计样本方差,其峰幅度不同。这些在 ∆ t = ∆ t (i) 处的峰具有不同的幅度 A g2(i) ,其与 g (2) (∆ t (i) ) 成正比。反映方差的改进自相关函数可以表示为
在很大程度上,纳米级的流体运输在很大程度上是维珍领土。近年来,碳纳米管中的快速流[1-4]等新现象已经发布,或者在碳纳米管中的特殊离子转运[5],硝酸硼纳米管中的大渗透力[6]或纳米氧化石烯和石墨烯氧化物的高渗透[6] [7-9]。这些现象中的许多现象仍有合理化[10,11]。尽管在理论和数值方面进行了详尽的探索,但仍然缺乏实验输出,因为该领域的研究非常具有挑战性。然而,对纳米通道内流体运输的系统性理解,尤其是某种神秘的碳材料,是获得对纳米级级别发挥作用机制的基本见解的先决条件。的确,这些材料的流体特性对社会问题(如淡化和能量收集)产生了影响,这确实使许多希望寄希望了,因此对于确定其特定行为的物理起源至关重要。在这封信中,我们探索各种尺寸的个体碳纳米管(CNT)内部的离子传输,通常在数十个纳米范围内。,我们尤其将重点放在离子电导率及其对盐浓度的依赖性以及离子电流的波动上。我们报告了低盐浓度下电导的“不寻常”缩放行为,可以用碳表面上的氢氧化物吸附来解释。单个纳米管和实验设置。- 单个跨膜纳米管设备由此外,当前噪声的测量值强调了噪声幅度对表面电荷的密切依赖性,这表明表面吸附在离子传输的低频行为中起关键作用。结果显示,结果与硝酸硼纳米管(BNNT)的响应有很大不同,后者表现出相同的Crys-Salographich,但截然不同。
'类似激光的“远程相干量子现象可能会在细胞骨架微管中生物学发生。本文介绍了我们称为“超赞”和“自我诱导的透明度”现象中发生的现象中发生的理论预测。考虑了在微管的空心核心和量化的电磁辐射场中被罚款的水分子的电偶极场之间的相互作用,并且将微管被理论化以扮演非线性相干光学设备的作用。超高是一种特定的量子机械排序现象,其特征时间比热相互作用的时间短得多。因此,微管中的光学信号(和计算)将不受热噪声和损失。微管网络和其他细胞骨架结构网络中的超级型光学计算可能为生物分子认知和意识的底物提供基础。
nist.gov › publication › get_pdf 基于 AI 的晶体管中电荷噪声的变化... 2瑞士联邦计量局,3003 Bern-Wabern,瑞士。