摘要 在工业应用中,具有精确几何公差的高精度旋转轴通常以微米级的间隙安装在齿轮和壳体之间。在大多数此类应用中,动态循环载荷是不可避免的,这会对关键部件的疲劳寿命产生不利影响。在加工过程中确保严格的尺寸公差和同轴度是非常必要的,因为它会影响许多应用中的旋转特性。因此,同轴度误差的控制在旋转轴和高精度机床中起着至关重要的作用。然而,使用高精度加工会大大增加制造成本。因此,一种能够潜在地降低同轴度误差的经济高效的加工工艺具有很高的工业重要性。本研究试图通过优化参数(切削速度、进给速度、切削深度和切削刀尖半径)来实现圆柱形加工零件的最小同轴度误差。计划进行以下实验:中心复合设计矩阵和统计分析应用响应面法确定了机器参数对高强度 Al 7075 合金同轴度误差的影响。进给速度和切削深度因素对同轴度误差有显著影响。所有加工参数对同轴度误差均表现出非线性影响,这定义了强相互作用因素的影响。通过确定一组加工参数,即应用 Big-Bang 和 Big Crunch 和 Rao(Rao-1、Rao-2 和 Rao-3)算法,利用推导出的经验方程来最小化同轴度误差。Rao 算法在计算工作量和求解精度方面均优于 Big-Bang 和 Big Crunch 算法。通过实验验证了 Rao 算法的结果,同轴度误差降低了 1.013 µm,与 CCD 实验相比提高了 72.6%。
防卫省情报本部网站(https://www.mod.go.jp/dih/service.html)〒162-8806 东京都新宿区市谷本村町5-1 防卫省情报本部总务部会计课(联系人:高田)电话:03-3268-3111(内线31752)直拨传真:03-5225-9641
3 3光电半导体元件光电子半导体设备3 3 3光电子学光电2 4光电实验技术光电子实验室光电工程概论3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3个测量系统的量度测量系统。测量系统设计半导体元件及材料特性分析3 3 3分析半导体设备和材料半导体元件物理33 3 3 3 3 3 3半导体行业和技术的特殊主题半导体磊晶技术3 3 3 3 3 3 3 3 3 3 3 3半导体制程技术半导体处理技术纳米科学和技术简介3 3 3微电子材料与制程微电源材料和加工新兴奈米电子元件与奈米光子结构33 3 3 3 3 3 3 3 3 3 3 3 3 3 3量子机制3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 quant
4. 说明书发行地点、合同条款等的记载地点、咨询处及提交地点 防卫省情报本部网站(https://www.mod.go.jp/dih/service.html) 〒162-8806 东京都新宿区市谷本村町5-1 防卫省情报本部总务部会计课(联系人:高田) 电话:03-3268-3111(内线31752) 直通传真:03-5225-9641
目标:恶性外周神经鞘肿瘤(MPNST)是高度侵略性的麦芽瘤,治疗率有限,存活率较差,因此需要发展新的治疗疗法。由于由近端抑制基因CDKN2A损失造成的乘客缺失,大约25-50%的MPNST港口丧失酶甲基腺苷磷酸化酶(MTAP)损失。PRMT5由于底物甲基噻吩并腺苷(MTA)的积累而被鉴定为MTAP被骨化细胞中的选择性依赖性,该细胞本身就是内源性PRMT5抑制剂。TNG908和TNG462是临床阶段MTA合件PRMT5抑制剂,可分别证明对MTAP细胞的选择性分别在15倍和45倍的MTAP -INTACT -INTACT细胞上。先前的报道表明,这两个分子都驱动了各种MTAP癌症组织学的异种移植模型中耐用的肿瘤回归。在这里,我们的目标是检查临床前MPNST模型中TNG908和TNG462的活性。
4. 参加投标的资格 (1) 投标人不得存在《预算会计审计法》第七十条规定的情况。此外,未成年人、受援助者或接受援助的人,如果已经取得签订合同所必需的同意,也属于同一条款下的特殊情况。 (2)不属于《预算会计审计法》第七十一条规定情形的。 (3)2022 年至 2024 年度全省厅统一资格“货物销售”等级评估为 D 级或以上,且有资格参加关东/甲信越地区竞争性投标的人。 (4)该人目前没有受到国防部的停职或者其他措施的处罚。 (5) 与前项规定暂停指定对象者有资本或人事关系,且无意与国防部签订与其同类物品买卖或制造契约或劳务承包契约者。 (6)目前中止招标的单位原则上不允许进行分包。 但有关部会暂停提名权机关认定确有不可避免的情况时,不在此限。
具身人工智能 (EAI) 是当代人工智能的一个方向,其特点是发展对自然认知过程的综合研究,其假设是认知者的身体在认知中起着决定性的作用。在 EAI 中,“身体”的概念呈现出广泛的解释,从概念上讲,可以认为跨越了两个极端:一种是用于符号信息处理的神经元外物质支持的概念,适合将符号置于感觉运动关联中;一种是多重、集成、嵌入环境的系统的概念,其自组织的生物动力学与意义建构过程密不可分(纠缠在一起)(例如,Gallagher,2011;Ziemke,2016)。EAI 通常被宽泛地等同于机器人 AI,即一种以构建和实验探索自然认知过程的硬件模型为目标的 AI 形式。事实上,与计算机不同,机电机器人被赋予了身体,使其处于物理世界中 — 即,不(仅仅)处于抽象的“信息世界”中 — 并允许它们基于传感器(例如,能够检测障碍物、光、声音、电磁信号等的传感器)与其进行交互。和执行器。在大多数情况下,EAI 创建由计算机控制的机器人,这样机器人代理的身体在其与环境的感觉运动交互中,将中央处理单元的活动作为基础,中央处理单元充当信息处理和决策设备。然而,EAI 社区也致力于构建不受计算机引导的机器人,这些机器人能够仅通过身体来了解周围环境并完成认知任务(例如 Brooks,1991;Steels 和 Brooks,1995)。自 20 世纪 90 年代初出现以来,EAI 通过其多种表现形式,在基础研究和应用研究层面都取得了令人瞩目的进步(例如 Pfeifer 和 Bongard,2006)。尽管如此,从 20 世纪 90 年代末开始,人们就开始争论 EAI 方法是否适合生物体建模。这些批评越来越多地不局限于强调 EAI 典型的理论和实现的身体机械观。他们注意到 EAI 无法对身体组织进行建模,即通过新陈代谢支持生物体不断自我生产的功能关系动态网络(Ziemke,2016;Damiano 和 Stano 2018)。这些都是激进的批评,指出目前 EAI 对自然认知过程的综合研究仅仅建立在对生物体的模仿建模上:一种人工重建,只考虑身体结构的表面方面(例如,运动和解剖元素)而忽略了其最具体的维度——自主组织。在这篇短文中,我们打算介绍一种旨在克服这一差距的 EAI 研究方法的一般纲领路线。这样的程序本身并不是什么新鲜事。EAI 研究
参数 值与单位 输出功率 (P) 390 W 送粉速率 ( VF ) 174 mg/s 扫描速度 ( VS ) 5.0 mm/s 激光光束直径 ( d ) 1.0 mm Z 轴增量 ( Z ) 0.29 mm 层数 ( N ) 20 激光吸收率 0.4
第 2 部分 - “信息安全” 注 1:[保留] 注 2:第 5 类 — 第 2 部分“信息安全”产品,当供用户个人使用或作为交易工具时,可获得许可例外 TMP 或 BAG,但须遵守这些许可例外的条款和条件。 注 3:密码学 注:ECCN 5A002、5D002.a.1、.b、.c.1、z.1、z.5 和 z.6 不管制以下物项: a. 满足以下所有条件的物项: 1. 通过以下任何一种方式在零售点无限制销售,一般可供公众使用: a. 场外交易; b. 邮购交易; c. 电子交易;或 d. 电话交易; 2. 加密功能不能被用户轻易更改; 3. 设计为由用户安装,无需供应商进一步的实质性支持; 4. 必要时,可查阅物项的详细情况,并应要求向出口国有关当局提供,以确定其符合本说明第 a.1 至 a.3 段所述的条件;
5. 规格书发行地点、合同条款等的记载地点、咨询处及提交地点 防卫省情报本部网站(https://www.mod.go.jp/dih/service.html) 〒162-8806 东京都新宿区市谷本村町 5-1 防卫省情报本部总务部会计课(联系人:大西先生) 电话:03-3268-3111(内线 31752) 直拨传真:03-5225-9641