■可以创建具有癌症特性的细胞系,并且可以在体外验证针对癌症的有效药物。 ■对于选择副作用较少而不会损害正常细胞的治疗剂很有用。 ■可以快速研究出现对治疗剂的耐药性的机制。 ■可以迅速进行新的治疗剂的评估。 ■使新的治疗剂的发现成为可能。 ■体外药物筛查合作。
摘要 脑动静脉畸形 (bAVM) 发病率低,但总年出血率为 2-4%,且破裂时具有较高的发病率和死亡率。治疗方案包括显微手术切除、立体定向放射外科和栓塞治疗,可单独进行或以各种组合进行。由于每种病例的风险各不相同,因此对于治疗指征和处理病例的方法尚无共识,尤其是对于未破裂的病例。尽管受到了高度批评,bAVM 的血管内治疗在安全性和效率方面一直存在争议,尤其是在 ARUBA 结果出现之后。从那时起,血管内 bAVM 治疗取得了许多进展,不仅在设备和材料方面,而且在技术方面也是如此,例如经静脉栓塞的改进,以及最近引入的治愈性多塞流控制技术。本综述描述并讨论了先进的栓塞技术。
原发性感染中不存在的微生物在专业干预后进入根管系统,会引起继发性根管内感染。微生物的进入可能是在治疗期间、就诊间隔期间,甚至是根管充填后。涉及的种类可能是口腔或非口腔微生物,具体取决于感染的原因。治疗期间微生物进入根管的主要原因包括牙冠上残留的牙菌斑、牙结石或龋齿;橡皮障漏水;或根管器械、冲洗液或其他根管内药物受到污染。微生物可能在就诊间隔期间通过临时修复材料的丢失或泄漏、牙齿结构断裂以及留有引流口的牙齿进入根管系统。根管充填后,微生物也可能通过临时或永久修复材料的丢失或泄漏、牙齿结构断裂、复发性龋齿暴露根管充填材料或延迟放置永久修复体进入根管系统。
•设计了一种以自定义目标函数为指导的基于优化的方法,以学习stylegan2的潜在空间中的歧管,与输出图像中的局部变化相对应(例如歧管内的潜在向量仅改变面部同一图像的口区域)
摘要背景髓鞘碱性蛋白(MBP)是中枢神经系统髓鞘中第二丰富的蛋白质。自20世纪80年代以来,它一直被视为创伤和疾病中脑组织损伤的标志物。目前尚无关于动脉瘤性蛛网膜下腔出血(SAH)中MBP的报道。方法104例动脉瘤破裂的SAH患者,在破裂后24小时内接受血管内治疗,采集156份血液样本:SAH后0 - 3天104份,4 - 6天32份,9 - 12天20份。采用ELISA检测MBP水平,并与入院时的临床状况、实验室结果、影像学检查结果和3个月时的治疗结果进行比较。结果 SAH 后 0 – 3 天的 MBP 水平在预后不良患者 (p < 0.001)、死亡患者 (p = 0.005)、接受颅内介入治疗的患者 (p < 0.001) 和脑出血 (ICH; p < 0.001) 患者中显著升高。SAH 后 4 – 6 天,颅内介入治疗 (p = 0.009) 和 ICH (p = 0.039) 后的 MBP 水平显著升高。SAH 后 0 – 3 天的 MBP 水平与 3 个月格拉斯哥预后量表 (cc = − 0.42) 以及 ICH 体积 (cc = 0.48) 之间存在临床相关性。所有完全康复的患者在 SAH 后 0 – 3 天的 MBP 水平均低于检测限。血管内动脉瘤封堵术后,104例患者中86例(83%)MBP未升高。结论颅内动脉瘤破裂后外周血MBP浓度反映脑组织损伤程度(手术或ICH所致),与治疗结果相关。血管内动脉瘤封堵术后MBP未升高,提示该技术安全性较高。
在苏门答腊室举行的“通过血管内成像优化 PCI”研讨会是一次非凡的学习体验,它结合了技术和技巧,彻底改变了 PCI 优化。研讨会由杰出的教师阵容授课——Dafsah A. Juzar 医学博士、Dian Larasati Munawar 医学博士、Pannipa Suwannasom 医学博士和 William Hau 医学博士,其先进的病变评估、支架选择和程序策略方法吸引了与会者。研讨会首先由 Dafsah A. Juzar 医学博士概述将血管内超声 (IVUS) 整合到现代 PCI 中的重要性。接下来是 Dian Larasati Munawar 医学博士关于病变评估的精彩讲座,为与会者提供了对斑块形态的深入了解,以改进 PCI 策略。随后,Pannipa Suwannasom 医学博士登台,深入探讨支架选择的技术细节,使与会者能够做出明智的决定,获得最佳结果。会议在 William Hau 医学博士的演讲中达到高潮,他探讨了支架优化的关键步骤,指导参与者如何预先解决潜在的并发症。
类。召回或灵敏度计算为:true正/(true strue + false负),精度
针对身体内不同使用部位而设计的支架结构在材料含量和设计方面均有所不同。为了达到此目的,已经出现了各种支架设计。首例心血管支架植入术于 1986 年实施,采用不锈钢支架(Wallstent,Schneider AG)[3]。为了克服这些支架群体在临床应用时遇到的困难,如断裂、腐蚀等机械问题,以及长期再狭窄等血管闭塞问题,采用不同材料制作的支架应运而生[4]。 1987年,第一个获得FDA批准的支架(Palmaz-Schatz,强生公司)问世。 20 世纪 90 年代初期开发的其他支架设计(Flexstent、Cook;Wiktor、Medtronic;Micro、Applied Vascular Engineering;Cordis、Cordis;Multi-link、Advanced Cardiovascular Systems)能够降低弹性恢复和再狭窄问题的风险 [5]。后来,涂层金属支架得到广泛应用,解决了生物相容性金属在腐蚀性体液中出现的腐蚀问题[6]。