12。绘制一个图表,该图显示了伏尔塔克细胞的工作原理。包括阳极,阴极,电压计和盐桥。使用箭头指示电子流的方向。解释盐桥的功能和意义。该图应显示两个断路器,每个断路器都用浸入与倒置U-Tube(盐桥)的溶液中的电极。电子从阳极流向阴极。可以绘制电压仪表以表明某些电流在流动。盐桥允许减少两个单元中发生的电荷堆积的离子流动。没有盐桥,反应将停止,因为过多的电荷会在两个细胞中迅速堆积(氧化细胞中的阳性离子和还原细胞中的负离子)。
图1超导性和异常大厅效应在锂插入的FESE中共存。实验设置的示意图。b温度依赖性电阻在锂插入后的样品S1上的不同触点测量。插图是样品S1的光学图像,在用H-BN上限之前拍摄。𝑅的上指数对应于插图中显示的触点。c和d大厅的电阻是锂插入后同一FESE样品上三对触点的垂直磁场的函数。𝑅表示所使用的触点(如图2b)。它们以150 K(C)和50 K(d)为单位。数据是从原始数据中抗对称的(请参阅方法)。曲线被垂直偏移,以确保清晰。虚线标记不同数据集的零霍尔电阻。箭头指示磁场的横向方向。
GaN 高开关速度导致的寄生电感 GaN 的使用频率高于老化功率 MOSFET 所能承受的频率,这使得寄生电感在电源转换电路中的劣化效应成为焦点 [1]。这种电感妨碍了 GaN 超快速开关能力的全部优势的发挥,同时降低了 EMI 产生。对于大约 80% 的电源转换器使用的半桥配置,寄生电感的两个主要来源是:(1) 由两个功率开关器件以及高频总线电容器形成的高频功率环路,以及 (2) 由栅极驱动器、功率器件和高频栅极驱动电容器形成的栅极驱动环路。共源电感 (CSI) 由环路电感中栅极环路和功率环路共有的部分定义。它由图 1 中的箭头指示。
图6用于尿β2-微球蛋白结合珠的免疫印迹,该珠子用抗β2-微球蛋白抗体固定的铜离子。Naito等人描述了用铜离子固定的珠子的制备。[26]。用磷酸盐缓冲盐水稀释10倍的尿素的二十微升珠子(PBS:150 mM NaCl,20 mM磷酸钠; pH 7.2)。将混合物在4°C旋转30分钟,然后在4°C下以16,000×g离心5分钟。颗粒珠3次。铜结合蛋白从珠子中释放出来,由十二烷基硫酸钠变性,然后受到十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳的影响,然后用抗-β2-微球蛋白抗体进行免疫印迹。箭头指示在尿素样品中检测到的三种不同类型的糖基化β2-微球蛋白。m表示标记蛋白。
图1(a)设备的示意图。将封装在两个HBN薄片(紫色)中的BLG薄片(黑色)组成的异质结构放在金属后门(BG,深橙色)上。分裂的门(SG,浅橙色)和手指门(FGS,浅橙色)通过绝缘氧化铝层分开。金属触点(黄色)用于检测传输电流。(b)设备的有限偏置光谱测量。数字𝑁表示库仑封锁区域中的电子职业。(c)3 rd,第4和第5次COULOMB钻石的放大,从中提取第一壳能量δ𝐸SH1。红色箭头指示与激发态相对应的过渡线。左下方示意图说明了前5个电子的壳结构。(d)分别从正面(上图)和负SD分支(下图)提取第4个电子的激发状态能量。
补充图1。人和小鼠中p53缺陷骨肉酶的转录因子和下调的转录因子。(a)代表性骨基因生殖器特异性p53基因敲除小鼠的胫骨的OS发育(iosterix/sp7 -cre; p53 fl/fl)。箭头指示肿瘤。osterix-cre也在成年小鼠的BM-MSC中表达5。右面板:X光片。比例尺= 1厘米。(b)人和小鼠中的RNA-seq数据的主要成分分析(PCA),比较OS组织(OS)和正常成骨细胞(OB)。(c)比较OS和OB的RNA-seq数据的MA图表示。七个TF(图1a,b)用红点表示。(d)七个转录因子的预后功效(图1a,b)通过Kaplan -Meier对目标队列中OS患者的生存分析确定。** p <0.01; * p <0.05。
(a)果蝇和D. ananassae中eIF4E1基因组社区的同步比较。薄的下面箭头指示了DNA链,其中基因– EIF4E1位于D. melanogaster(顶部)和D. ananassae(底部)基因组中。指向左侧的细箭头表明eif4e1在D. ananassae和D. melanogaster中的负( - )链上。指向EIF4E1的方向相同方向的宽基因箭头相对于薄的下层箭头在相同的链上,而指向EIF4E1相反方向的宽基因箭头相对于薄的底层箭头相反。白色基因箭头D. Ananassae表示与Melanogaster中相应基因的矫形学。D. ananassae基因箭头中给出的基因符号表示D. melanogaster中的直系同源基因,而基因座标识符是特定于D. ananassae的。(b)GEP UCSC轨道数据中心中的基因模型(Raney等,
图5。动物内剂量升级非人类灵长类动物(NHP)的毒性研究表明,DAR 8与基准接头付费量DXD结合的ICAM-1抗体与良好的抗体暴露良好耐受性。证明ICAM-1可以成为基于拓扑异构酶I的ADC的安全目标。分别用10 mg/kg,20 mg/kg和41 mg/kg/kg icam -1 -dxd在第1、15和29天静脉内给予两只雌雄猴子,每性别一只猴子,分别用10 mg/kg,20 mg/kg和41 mg/kg/kg ICAM -1 -DXD给药(如红色箭头指示)。血样,以确定血浆中总抗体浓度。所有动物一直存活到研究结束,没有任何可观的体重减轻或遇到痛苦的迹象。在血液学,临床化学和凝血分析中没有观察到的发现。在组织和器官的总体和微观检查中未观察到异常。计划对ICAM -1 -VC001进行NHP研究。
内容实验细节图S1。使用0.15m钠( - ) - dibenzoyl-l-tartrate的洗脱完成了L,L-1 4+和D,D,D,D-1 4+的对映体分离的示例。图S2。 使用阳离子 - 交换色谱法分辨出L,L -L -1 4+,D,D,D -1 4+和D,L -1 4+的圆形二色光谱。 表S1。 [D,D -1] Cl 4的晶体数据摘要。 表S2。 [L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。图S2。使用阳离子 - 交换色谱法分辨出L,L -L -1 4+,D,D,D -1 4+和D,L -1 4+的圆形二色光谱。表S1。 [D,D -1] Cl 4的晶体数据摘要。 表S2。 [L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。表S1。[D,D -1] Cl 4的晶体数据摘要。表S2。 [L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。表S2。[L,L -1] Cl 4的晶体数据摘要。 图S3。 用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。 用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。 在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。 顶部:在5mm Tris中添加CT-DNA,25mm NaCl。 底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。 用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。 与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。 显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。 箭头指示每个发射图S7的L最大值。 用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。 图S8。 图S9。[L,L -1] Cl 4的晶体数据摘要。图S3。用于[D,D -1] Cl 4晶体结构图S4的阳离子的热椭圆形图。用于[L,L -1]阳离子的热椭圆形图(PF 6)4晶体结构图S5。在将DNA逐渐滴定到过量的情况下,涉及L,L -1 4+(5µm)的水缓冲液滴定的示例(25°C时PH7.0)。顶部:在5mm Tris中添加CT-DNA,25mm NaCl。底部:在添加人端粒序列时,HTS,(D [Ag 3(T 2 Ag 3)3])在缓冲液中(10 mmKH 2 PO 4 /k 2 HPO 4,1MM k 2 EDTA在50–200 mm kCl中)。用HTS( - )L,L -1 4+(5µm)的L,L -1 4+(5μm)的最大发光强度。与CT -DNA( - )的等效滴定在实验误差中对于D,D -1相同。显示了与HTS( - )的D,D -1(5µM)在等效滴定上获得的最大发射强度的示例。箭头指示每个发射图S7的L最大值。用L,L -1 4+(Lambda),D,D,D -1 4+(Delta)和D,L -1 4+(MESO)在MTT分析中获得的细胞活力数据示例。图S8。图S9。lambda堆叠实验显示了活的MCF -7细胞中A)D,D -1 4+和L -1 4+的发射曲线。MCF7细胞的CLSM图像使用两个单独的检测通道,分别为670-700 nm(红色)和630-640 nm(黄色),对于D,D,D -1 4+(TOP)和L,L,L -1 4+(底部)。
图1的遗传转化效率(ET)线。10个选定的F8线被用作202材料,用于转化Pant1ox构建体。从幼苗中切出7天大的子叶,并通过pant1ox构建体转化203个子叶,然后在卡纳米霉素选择培养基上生长。在一个实验中使用了至少30个204个外植体。进行了三个生物学重复。pant1ox 205构造。kanr:kanamycin表达录音带(pnos-nptii-tocs),p35s:CAMV35S长启动器。b 206 slant1在番茄共叶中的表达(代表性图片)。上图:转换后21 207天的Slant1表达(DAT)。紫色箭头指示紫色斑点。下面板:紫色芽(左)208和水果(右)。c转换效率。y轴显示平均每209个外植体的紫色斑点。 X轴表示在本实验中测试的番茄F8线。数据表示平均值±SD。n = 3。210星号表示ET线与对照HK之间的显着差异(P <0.05),为211由t检验确定。212