这篇硕士论文-开放获取由西密歇根大学 ScholarWorks 研究生院免费提供给您,供您开放获取。它已被西密歇根大学 ScholarWorks 的授权管理员接受,并被纳入硕士论文。有关更多信息,请联系 wmu-scholarworks@wmich.edu 。
确定施加载荷的位置点,以避免航空航天应用中使用的薄截面发生扭曲。 理解区分曲梁中中性轴和质心轴的概念。 理解为分析受扭转的非圆形杆而开发的类比模型,以及分析滚动体之间产生的应力和三维物体中的应力。 UNIT-I:应力分析:点的应力状态、任意平面上的应力分量、主应力、应力不变量、莫尔圆、最大剪切平面、八面体应力、平面应力状态、平衡微分方程、边界条件。应变分析:点附近的变形、点的应变状态、剪应变分量的解释、应变和主应变的变换、兼容条件。平面应变状态。线性应力-应变-温度关系:内能密度和互补内能密度。各向异性、正交各向异性和各向同性弹性的胡克定律。各向同性材料的热弹性方程 UNIT-II 剪切中心:轴对称和非对称截面的弯曲轴和剪切中心-剪切中心。薄壁截面的剪切应力、箱梁的剪切中心非对称弯曲:非对称弯曲梁的弯曲应力、非对称弯曲导致的直梁挠度。 UNIT-III:曲梁理论:温克勒-巴赫周向应力公式 – 局限性 – 校正系数 – 曲梁的径向应力 – 闭环承受集中和均匀载荷 – 链环中的应力。第四单元:扭转:线性弹性解,一般棱柱形杆——实心截面,如圆形、椭圆形、三角形和矩形,普朗特弹性膜(皂膜)类比;窄矩形截面,空心薄壁扭转构件,多连通截面。第五单元:接触应力:介绍,确定接触应力的问题,接触应力解所基于的假设;主应力表达式;计算接触应力的方法,点接触物体的挠度;两个物体在窄矩形区域接触的应力(线接触)垂直于面积的载荷,两个物体线接触的应力,垂直于和切向于接触面积的载荷。
摘要近年来对结构化标量涡流束的光学手性和自旋角动量进行了深入研究。这些梁的伪内拓扑电荷ℓ造成其独特特性的原因。是由带有拓扑电荷的标量涡流梁的叠加构建的,圆柱矢量涡流梁是具有空间上不均匀极化分布的高阶庞加尔模式。在这里,我们强调了这些高阶结构梁在偏尾(弱焦点)和非顺式(紧密的聚焦)条件下的光自旋和手性密度的高度可调节和异国情调的空间分布。我们的分析理论可以在任何高阶或杂种庞加莱球体上产生每个点的自旋角动量和光学手性。表明,可调的pancharatnam拓扑电荷ℓp =(ℓa +ℓb) / 2和偏振指数m =(vector涡流梁的vortex beam的ℓb - ℓa) / 2在自定义其旋转和chir式空间分布方面起着决定性的作用。我们还提供了正确的分析方程式,以描述集中的非顺式标量贝塞尔束。
地 址:湖北省武汉市青山区和平大道 947 号 邮政编码: 430081 联系部门:武汉科技大学研究生招生办公室 电 话: 027-68862830 网 址: http://ysxy.wust.edu.cn 单位代码: 10488 邮 箱: wustyjsy@wust.edu.cn
改造说明 › 面板可以安装在现有墙上,可以拆除或保留包层,并拆除现有窗户和内部装饰。在现有组件上安装矿物纤维绝缘层,以提供面板安装的内外公差,同时阻挡面板和现有墙壁之间的小空间。 › SIP 定位并固定在连续绝缘箱梁中,该箱梁由上层墙底部的间歇基础支架、下层楼板线的边缘面板和屋顶线的胶合板铅垂垫片支撑。 › 空气屏障/耐候屏障(AB/WRB,详细信息中用红色标注)是外部 OSB 护套上的工厂安装的自粘膜。接头用过渡膜和兼容的压敏丙烯酸胶带进行表面密封。 › 可以在工厂将新窗户(及其装饰/封闭件)预先安装到面板中,也可以在面板放置后在现场安装以适应公差。窗户 AB/WRB 过渡/毛坯开口膜在工厂安装在 SIP 上。 › 排水和通风雨幕覆层已预先安装,面板接头和窗户接口除外(如果现场安装)。 › 封闭覆层、防水板和饰边按要求安装在面板接头和窗户上。
摘要。通常,复杂航空航天部件的超声波检测采用喷射技术。然而,水耦合会带来压力变化、气泡、水垢、藻类和机械腐蚀等缺点。因此,最好采用非接触式技术,以避免这些缺点。空气耦合超声波技术可以通过特殊传感器结合特殊发射器和接收器技术来减少空气和固体之间的巨大声学失配。尽管进行了这些优化,但测试频率必须低于 1 MHz。已经发表的研究表明,低超声频率对于检查 CFRP 夹层部件(即使使用水耦合)是必要的。空气耦合超声波检测技术已经适用于测试 CFRP 蜂窝夹层结构。由于传感器在复杂部件的相对侧垂直对齐,因此需要十轴机器人扫描系统。本文介绍了欧洲直升机公司自 2011 年起在多瑙沃特运行的自动空气耦合机器人超声波成像系统的初步结果和细节。该项目是欧洲直升机公司德国分公司、Robo-Technology、EADS Innovation Works、Ing. Büro Dr. Hillger 和 Ostertag 之间的合作项目。
液体晶体(LC)是一种出色的电磁材料,在液体和晶体固体之间具有中间结构。它具有较大的光学各向异性,其光学特性可以通过中等外部磁场轻松修饰,从而使光的放大和相位调制。LC显示基于光的幅度或两极分化的模拟,已成为巨大的商业成功。同时,在光子学领域探索了许多LC设备的新型非显示器应用[1-6]。lc光学元素在操纵不同程度的光中发现了新的作用,尤其是在矢量梁的工程中,具有简单配置,方便使用,低成本和高转换效率的优势。向量场[7 - 9],其中横梁横平的光极化是空间变化的,引起了很多关注。矢量梁作为对矢量螺旋方程的自然解决方案。它们经常被生成具有正交极化状态的正交标量场的超级位置,为
高维光子态 (qudits) 对于提高量子通信的信息容量、噪声鲁棒性和数据速率至关重要。时间箱纠缠量子位元是通过光纤网络实现高维量子通信的有希望的候选者,其处理速率接近传统电信的速率。然而,它们的使用受到相位不稳定性、时间不准确性以及时间箱处理所需的干涉方案的低可扩展性的阻碍。同样,增加每个光子状态的时间箱数量通常需要降低系统的重复率,进而影响有效量子位元速率。在这里,我们展示了一个光纤尾纤集成光子平台,该平台能够通过片上干涉系统在电信 C 波段生成和处理皮秒间隔的时间箱纠缠量子位元。我们通过实验演示了具有时间纠缠量子的 Bennett-Brassard-Mermin 1992 量子密钥分发协议,并通过展示维度缩放而不牺牲重复率,将其扩展到 60 公里长的光纤链路。我们的方法能够以标准电信通信的典型处理速度(10 GHz 的 GHz 速度)操纵时间纠缠量子,并且每个单频信道具有高量子信息容量,这代表着朝着在标准多用户光纤网络中高效实现高数据速率量子通信迈出了重要一步。
C. 结构 希尔空军基地 1 号楼和 1A 号楼改建工程的结构范围包括填充 CMU 墙中的现有开口和现有 CMU 墙中的新开口。新填充物将由与现有墙体尺寸相匹配的 CMU 构成。将安装穿过墙体的钢角过梁,以支撑新开口上方的横梁。将在群众简报室建造新的升高座位。升高座位的平台将由冷弯金属框架和胶合板护套构成。将在 1 号楼的屋顶层安装新梁,以支撑办公室和会议室中新的可移动隔断门。这些梁由现有砖石墙的钢角拱腹和走廊侧的金属螺柱箱柱支撑。该项目包括在 1 号楼和 1A 号楼之间选定的入口处建造新的檐篷。它们将由空心结构钢型材建造。钢柱将由新的钢筋混凝土点基础支撑。作为项目工作范围的一部分,对 1 号楼和 1A 号楼的改造部分进行了简单的抗震结构评估。将报告建筑剪力墙的需求/容量比和其他缺陷。实际的抗震升级工作不在项目范围内。
用猎户座纳米式机速度和精确地制造子10 nm纳米结构。使用其霓虹灯梁以极高的速度机器纳米结构并获得高吞吐量。使用氦束创建细腻的低于10 nm的结构,需要极高的加工保真度。为您的Orion Nanofab配备了可选的镀耐型纤维柱,它成为一种:世界上唯一涵盖了使用炮,霓虹灯,霓虹灯和氦离子光束整合到单个仪器中的微加工到纳米机械应用的系统。