原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
Ahmed Kareem Lateef博士抽象篮球运动员的垂直跳跃涉及各种方法,包括定向训练方法,该方法的重点是短螺旋周期(SSC)和肌肉主轴反应。这项研究旨在确定高素质和其他训练对篮球运动员腿部肌肉爆炸能力的影响。此信息对于教练修改其培训计划以提高垂直跳跃性能并在其团队中取得成功非常有用。这项研究为教练在计划年度培训计划中计划课程的教练提供了宝贵的见解,因为垂直跳跃会影响其技术绩效。关键字:篮球运动员,陈级集中,交接技能介绍以开发篮球运动员的垂直跳跃,有几种方法,包括定向训练方法,这是依赖其在三个阶段操作的方法之一:(固结,伸长,伸长和缩短和缩短),换句话说,中心和偏心contract。定向力学取决于短螺丝周期(SSC)。通过使用对势能的肌肉纺锤体反应,在运动的偏心肌肉作用中出现拉伸,从而在肌肉的连续弹性成分(SSC)中产生张力和强烈而快速的能量存储。肌肉的连续成分类似于环,(指导)被定义为使肌肉能够达到的练习。力量及其训练对于发展一般球员的身体能力,尤其是尤其是重要的训练。它的特征是强度和速度。在尽可能短的时间内达到最大长度(力速能力称为力),许多篮球运动员在得分技巧,尤其是跳高得分方面面临着弱点,这被认为是确定重要比赛表现的重要因素之一。因此,有必要采用最有效地发展肌肉力量的现代训练方法,并且根据篮球比赛的技能表现,这项工作将决定腿部肌肉的爆炸能力受到这组玩家的手工技能的爆炸性和其他训练的影响。这项工作将在篮球运动员的物理准备领域具有实际应用。从实际的角度来看,此信息对于教练修改其特定培训计划以提高垂直跳跃性能并在团队中取得成功很重要。很明显,篮球运动员的垂直跳跃会影响他们的技术表现。我们的研究中提供的信息可以为教练在计划年度培训计划中规划高级课程方面具有重要优势。研究问题的物理准备在篮球运动中占据了重要地位。但是,这项运动中最有效的训练方法仍有待证明。篮球中最重要的特征之一是垂直跳跃。因此,我们认为研究面向钢化值的训练对腿部爆炸能力的发展以及在年轻篮球运动员中跳跃得分很重要。研究人员还试图回答以下一些问题。
摘要:在国家篮球协会(NBA)的背景下,在包括体育和篮球在内的各种应用领域中使用了机器学习和知识发现中的预测模型,在这里可以找到相关的预测问题。在本文中,我们应用了监督的机器学习来检查NCAA篮球联盟中的历史和统计数据以及来自NCAA篮球联赛球员的功能,并解决了自动识别NCAA篮球运动员的预测问题,具有极好的机会达到NBA并获得成功。这个问题不容易解决;除其他困难外,许多因素和高度不确定性可能会影响篮球运动员在上述情况下的成功。解决这个预测问题的主要动机之一是为决策者提供相关信息,从而帮助他们改善雇用判断。为此,我们的目标是实现产生可解释的预测模型表示和令人满意的准确性水平的优势,因此,考虑到可解释性和预测精度之间的交易,我们已经投资于白盒分类方法,例如诱导决策树,以及逻辑回归。但是,作为基准,我们认为相关方法是黑框模型的参考。此外,在我们的方法中,我们探索了这些方法与遗传算法相结合,以提高其预测精度并促进特征降低。此外,分析还强调了哪些特征在模型中最重要。结果已经对结果进行了彻底的比较,并且已经强调了表现出色的模型,从而揭示了最佳白盒和黑匣子模型之间的预测精度差异很小。遗传算法和逻辑回归的配对特别值得注意,超过其他模型的预测精度和显着的特征降低,有助于结果的解释性。
篮球运动是高校热门运动之一,篮球运动损伤是常有的事,利用机器学习等技术可以有效减少篮球运动损伤,而篮球运动损伤的发生要从预防开始。篮球动作不规范、身体协调性不足不仅会降低运动员的运动效率,还会增加受伤的概率,因此有效减少和有针对性地预防不规范动作对高校篮球运动意义重大。随着科技的发展,人工智能技术离我们的生活越来越近。本文基于机器学习平台,从体育与医学融合的角度对篮球运动损伤进行研究,研究哪些方面导致了大学生篮球运动损伤是未来需要研究的重点,有效预防大学生在篮球运动中受伤是运动医学领域亟待解决的问题。为了找到最适合高校篮球运动损伤研究的机器学习平台,本文将介绍三种不同的方法进行比较分析。本文实验采用的技术为传统的BP神经网络技术、SCG神经网络技术、RBF神经网络技术,通过实验得知,RBF神经网络技术预测准确率高达95.4%,是研究大学生篮球失利较为优秀的神经网络算法。
篮球运动是全球最受欢迎的运动项目之一,其相关产业也产生了巨大的经济效益。近年来,人工智能(AI)技术在篮球运动中的应用引起了大量关注。我们通过文献检索,对AI在篮球运动中的应用研究进行了全面的综述。目前的研究主要集中在篮球队和球员表现的AI分析、比赛结果预测、投篮分析预测、AI教练系统、智能训练机与竞技场、运动伤害预防等方面。大多数研究表明,AI技术可以提高篮球运动员的训练水平,帮助教练制定合适的比赛策略,预防运动伤害,提高比赛观赏性。同时也发现,发表的论文数量和水平相对有限。我们认为AI在篮球运动中的应用还处于起步阶段。我们呼吁相关行业加大这方面的科研投入,推动篮球运动水平的提高,让篮球运动在世界范围内的普及和发展越来越精彩。
本论文是许多与我共事的人提供的想法和努力的产物。首先,我要感谢我的两位导师:约翰·卡尔森副教授和克里斯·琼斯先生,感谢他们无价的指导和监督。还要感谢迈克·麦肯纳博士在该项目后期阶段的大量投入。还要感谢理查德·沃尔什先生的技术协助和尼尔·戴蒙德先生的统计协助。特别感谢安德鲁·麦卡里先生为这个项目投入的大量时间。他的录像技巧在篮球视频分析领域无与伦比。最后,我要向吉朗超级猫队和墨尔本老虎队的受试者致以诚挚的谢意,他们花时间参与了这项调查。特别是,我要感谢韦恩“狗”拉金斯先生的帮助,如果没有他,这个项目会困难得多。还要感谢两支球队的教练史蒂夫·布雷尼先生和林赛·盖兹先生的帮助。