基于牙龈胶的纳米制剂是一个新兴的研究领域,近年来引起了极大的关注。瓜牙口香糖是一种天然多糖,是源自cyamopsis tetragonoloba植物的种子的天然多糖。它具有广泛的应用,包括作为食物添加剂,增稠剂和稳定剂。近年来,研究人员一直在探索瓜尔胶作为药物输送系统的潜力,尤其是以纳米形式的形式。纳米制剂是旨在提高药物的溶解度,稳定性和生物利用度的药物输送系统。它们通常由药物和载体材料组成,该材料旨在将药物运送到其体内的目标部位。在基于牙龈胶的纳米形式的情况下,瓜尔胶被用作载体材料。
1 木浦国立大学药学院药学系,全罗南道 58554,韩国 2 悉尼科技大学健康研究生院药学专业,悉尼,新南威尔士州 2007,澳大利亚 3 悉尼科技大学澳大利亚补充与整合医学研究中心健康学院,Ultimo,新南威尔士州 2007,澳大利亚 4 洛夫利专业大学药学院,帕格瓦拉 144411,印度 5 苏雷什吉安维哈尔大学药学院,斋浦尔 Jagatpura Mahal Road 302017,印度 6 悉尼科技大学百年研究所和生命科学学院理学院炎症中心,悉尼,新南威尔士州 2050,澳大利亚keshavraj.paudel@uts.edu.au (KRP)
癌症的不可控性和转移性使其病情更加恶化和难以预测。因此,许多疗法和药物被用于控制和治疗癌症。然而,除此之外,许多药物会引起各种副作用。在美国,近 8% 的患者因副作用而入院。发达国家的癌症患者更多,这与他们的生活方式有关。有各种植物成分分子,其中白藜芦醇 (RSV) 是最适合癌症的分子,因为它对身体的不良影响明显较小。RSV 通过调节各种途径(如磷酸肌醇 3 激酶 (PI3K)/蛋白激酶 B (AKT)/哺乳动物雷帕霉素靶蛋白 (mTOR) 途径)来抑制细胞增殖的启动和进展。 RSV 降低了细胞周期调节蛋白(如细胞周期蛋白 E、细胞周期蛋白 D1 和增殖细胞核抗原 (PCNA))的水平,并诱导细胞色素 c 从线粒体释放,导致细胞凋亡或程序性细胞死亡 (PCD)。RSV 的巨大优势也带来了一些挑战,因此,RSV 在水中的溶解度较差,即 0.05 mg/mL。由于 RSV 被肝脏和肠道高度代谢,因此生物利用度较差。令人惊讶的是,RSV 代谢物也会诱导 RSV 的代谢。因此,尿液中以不变形式存在的 RSV 量明显减少。由于生物利用度差、水溶性较低以及在体内停留时间长等挑战,研究人员决定制造纳米载体以实现更好的递送。采用纳米制剂技术,局部渗透率提高 21%,纳米封装得到改善,从而使生物利用度和渗透性提高许多倍。因此,本综述描述了 RSV 及其用于提高抗癌活性的纳米制剂的完整概况以及专利调查。
摘要:结直肠癌 (CRC) 是全球第二大致命癌症,化疗失败与多种药物限制有关,例如非选择性分布、半衰期短和多种耐药性的产生。CRC 治疗中最有前景的策略之一是开发基于纳米材料的输送系统,该系统可以更有效地将抗肿瘤药物输送到肿瘤部位,增加肿瘤内的积累,从而提高抗肿瘤效果。除了利用实体肿瘤增加的渗透性和保留效应 (EPR) 外,这些纳米制剂还可以与单克隆抗体结合,以识别在 CRC 细胞上特异性过度表达的分子标记。纳米制剂的主动靶向性减少了与药物在健康组织中的细胞毒活性相关的不良影响,这对于改善未来癌症患者的生活质量很有意义。本综述重点介绍了用单克隆抗体功能化的药物输送纳米制剂用于 CRC 靶向治疗的体外和体内研究。关键词:纳米制剂 结肠癌 单克隆抗体 5-氟尿嘧啶 靶向治疗
1 罗马尼亚克卢日-纳波卡巴别斯-博雅依大学生物与地质学院综合生物学博士学院,2 罗马尼亚克卢日-纳波卡巴别斯-博雅依大学生物与地质学院系统生物学、生物多样性与生物资源中心分子生物学与生物技术系,3 德国慕尼黑工业大学医学院皮肤病学与过敏学系,4 罗马尼亚克卢日-纳波卡巴别斯-博雅依大学生物纳米科学跨学科研究所分子生物学中心,5 罗马尼亚克卢日-纳波卡 NIRDBS 布加勒斯特分校生物研究所实验生物学与生物化学系,6 罗马尼亚 Iuliu Hatieganu 医药大学药学院制药技术与生物制药学系,罗马尼亚 克卢日-纳波卡
在X射线光刻(XRL)过程中,一些对X射线敏感并在特定溶剂中照射后改变溶解速率的材料(称为抗蚀剂)通过掩模暴露于X射线源并被图案化。掩模由重Z元素(Au,W等)组成,用作吸收区,而载体基板由低衰减元素(Si,Be,金刚石,SiC,SiNx等)组成(Tormen等人,2011年)。 XRL 的概念最早由 H. Smith 和 Spears 于 1972 年提出(Spears and Smith,1972;Smith 等,1973),由于其波长更短、穿透深度更大(比传统紫外光刻技术更短),引起了微纳米制造界的关注,为构建具有高深宽比、厚光刻胶和几乎垂直侧壁的微型器件提供了新的可能性(Maldonado 等,1975;Maydan 等,1975)。XRL 是 LIGA 工艺 [德语缩写 Lithographie Galvanoformung Abformung,意为光刻电沉积、成型(Becker 等,1986)] 的基本步骤,包括在显影的光刻胶结构中电沉积金属,以获得模具或电极,用于后续的复制工艺,如成型或电火花加工。 X 射线可分为软 X 射线和硬 X 射线(或深 X 射线),软 X 射线的能量范围为 150 eV 至约 2 keV,硬 X 射线(或深 X 射线)的能量则大于 5 keV。软 XRL 适用于光刻胶厚度有限的高分辨率结构(< 50 nm)。深 XRL(DXRL)通常用于 LIGA 工艺及照射厚光刻胶(数百微米)。目前,同步辐射设备中已有 XRL 技术。半导体行业对 XRL 的兴趣与技术节点的定义有关。该术语指的是特定的半导体制造工艺及其设计规则:最初,节点号定义了栅极长度或半节距(HP),而目前(22 nm 以下)它与采用特定技术制造的特定一代芯片有关。由于波长比紫外线更短,XRL 有可能确保所有技术节点的“分辨率储备”。此外,它不需要像紫外光刻那样在每个技术节点上都使用不同的设备。然而,该技术的潜力尚未得到充分发挥,因为人们首先关注的是紫外光刻,然后是极紫外光刻(Tormen 等人,2011 年)。最近,XRL 引起了 Next 2 节点(10 纳米技术节点以外)及以后的新关注,这主要是由于软 X 射线干涉光刻的潜力(Wu 等人,2020 年,Mojarad 等人,2015c 年)。
复眼 (CE) 是一种先进的光学视觉系统,具有大视场、无限景深和动态成像能力等显著特点,在机器人视觉、无人机检测和医学诊断等应用领域展现出巨大潜力。与主要由多摄像机阵列组成的宏观 CE 相比,紧凑型集成 CE 因其便携性以及可与微型机器人和体内医疗设施灵活集成的可能性而备受关注。到目前为止,人们已经在这个领域投入了相当大的努力,其中制造技术对于开发能够进行大视场成像、深度信息收集和三维成像的人工 CE (ACE) 至关重要。先进 ACE 的实际应用面临挑战和机遇。本文回顾了制造 ACE 的最新技术,然后简要总结了它们在不同领域的潜在应用。最后,讨论了 ACE 当前面临的挑战和前景。
仿生双功能固体脂质纳米制剂,用于靶向药物输送和缓释,增强抗蠕虫药物阿苯达唑的效力 Sunidhi Sharma 1、Vanshita Goel 1、Pawandeep Kaur 1、Kundlik Gadhave 2、Neha Garg 2,3、Lachhman Das Singla 4、Diptiman Choudhury 1,5,6 * 1 印度旁遮普省帕蒂亚拉 147004 泰帕尔工程技术学院化学与生物化学学院。2 印度理工学院 (IIT),曼迪,曼迪-175005,喜马偕尔邦,印度。 3 印度贝拿勒斯印度教大学医学科学研究所,瓦拉纳西,北方邦 221005 4 印度旁遮普邦卢迪亚纳古鲁安加德德夫兽医和动物科学大学(GADVASU)。5 印度旁遮普邦帕蒂亚拉工程技术学院 - 弗吉尼亚理工大学新兴材料卓越中心。6 印度旁遮普邦帕蒂亚拉工程技术学院 Vedanga Life Technologies,印度旁遮普邦帕蒂亚拉工程技术学院。
您将在WMI(https://www.wmi.badw.de/)和慕尼黑近距离技术大学(https://wwww.tum.de/)的多元化研究活动中工作。在巴伐利亚科学与人文学院研究所WMI(BADW),我们在低温和最低温度下探索物理学,特别关注超导性和磁性以及对量子技术领域中量子系统的控制。WMI在量子科学和技术的广泛而高度可见的慕尼黑研究工作中起着关键作用,例如慕尼黑量子科学与技术中心(MCQST-https-https://wwwwwww.mcqst.de/)和最近确定的慕尼黑量子瓦利(MQV - https-https://wwwwwww.munich-valley to to to to。计算机。
中医(TCM)已被用来治疗中国的疾病约1000年。越来越多的证据表明,来自TCM的活性成分具有抗菌,抗增生性,抗氧化剂和凋亡诱导特征。然而,TCM的活性化合物的溶解度差和较低的生物利用度限制了临床应用。“纳米成型”(NFS)是新型和晚期药物传递系统。他们表现出改善药物溶解度和生物利用度的希望。尤其是“智能反应性NF”可以对目标部位的特殊外部和内部刺激做出响应,以释放荷载药物,这使他们能够控制靶组织内药物的释放。最近的研究表明,智能反应性NFS可以在疾病部位实现有目的的活性化合物,以增加患病组织中的浓度并减少不良反应的数量。在这里,我们回顾了“内部刺激 - 响应性NF”(基于pH和氧化还原状态)和“外部刺激 - 反应性NFS”(基于光和磁场),并专注于它们针对肿瘤和感染性疾病的TCM的活性化合物的应用,以进一步增强TCM在现代药物中的发展。