高级飞行员娜塔莉·多安 (Natalie Doan) 第 374 空运联队公共事务部 2024 年 7 月 5 日 由五架美国空军和韩国空军 C-130J 超级大力神飞机组成的编队于 6 月 25 日在朝鲜半岛上空进行了大规模空投补给任务,这是提高战术空运能力的训练的一部分。 此次训练是美韩空军首次在朝鲜半岛上空进行五机编队飞行,彰显了韩国空军、第7航空队和第374空运联队为加强美韩两军关系和互操作能力所做的努力。 “来自横田空军基地的一架 C-130 和来自金海的一支韩国空军部队正在参与协助空投集装箱运送系统物资,”负责协调地面控制和指定空投区的第 607 空中支援行动组的飞机机动联络官乔治·福金上尉说。 第 36 空运中队的飞行员驾驶四架 C-130J 从横田空军基地飞往韩国金海空军基地,美国和韩国空军飞行员在那里将集装箱运送系统物资装载到每架飞机上。 其间,美国和韩国空军的飞行员也参加了简报会,讨论任务的细节。 第 36 空运中队地区军事交流负责人 Timothy Kim 上尉表示:“第 36 空运中队进行这次训练是为了与韩国空军建立互操作能力并进行战术空投训练。空投和战术飞行演习对第 36 空运中队来说非常有价值,特别是在它从未经历过的空域和空投区。这是与我们的韩国盟军一起飞行的绝佳机会。” 第 36 空运中队和韩国空军上一次合作是在 2023 年的圣诞空投行动中,向密克罗尼西亚的 58 个偏远岛屿运送了人道主义援助。此前,两军在“HERC GUARDIANS 23”联合演习中进行了合作,演习内容涉及低空飞行和编队飞行相结合的战术编队训练。 金熙俊少校是第 36 空运中队的 C-130J 超级大力神教练飞行员,他担任 HERC GUARDIANS 23 演习的副任务指挥官以及本次空投训练演习的任务指挥官。他说,与 HERC GUARDIANS 23 建立的经验和关系帮助两国军队成功协调偏远地区的任务规划并执行大规模空投补给任务。 Heejun 少校说道: “这些演习证明,在危机时刻,我们可以共同努力、相互支持。我们一起训练得越多,我们就能更好地合作。我们必须克服各种障碍,从不同的单位运作模式到语言障碍。只有通过共同努力和更好地相互理解,才能克服这些障碍,这样我们才能作为一支联军有效、高效地合作。”
1. 背景................................................................................................................ 61
中国空间技术研究院 (中国) 643 26,135 30 空客 (欧洲) 611 13,954 67 波音 (美国) 430 14,624 88 Energiya (俄罗斯) 430 7,401 37 三菱电机 279 89,137 20 IHI 201 13,657 28 泰雷兹 (欧洲) 153 6,495 54 三菱重工 131 27,823 16 霍尼韦尔 (美国) 117 19,431 7 雷神 (美国) 105 5,383 3 斯奈克玛 (欧洲) 102 4,363 6 太空系统/劳拉 (美国) 58 168 12 Viasat (美国) 1 685 0 蓝色起源 (美国) 12 19 1 SpaceX(美国) 1 10 9 Rocket Lab(美国) 5 5 0 北京零度空间科技公司(中国) 2 24 0 Mojave Aerospace Ventures(美国) 2 2 0 PLD space(西班牙) 0 0 0 Reaction Engines(英国) 6 13 4 Relativity Space(美国) 0 2 0 Skyrora(英国) 0 0 0 Oneweb(美国) 11 29 0 Blacksky(美国) 0 0 0 Capella Space(美国) 0 0 0 Hawkeye360(美国) 0 6 0 Iceye(芬兰) 0 1 0 OHB System(德国) 1 8 20 Planet(美国) 5 27 2 Spire Global(美国) 6 22 0 ispace(日本) 7 13 1 Planetary Resources(美国) 4 4 1 Astroscale 12 12 0 D-Orbit (意大利) 4 4 0 NASA (美国) 91 1,924 959 日本宇宙航空研究开发机构 119 500 473 国防科技大学 (中国) 69 6,274 280 哈尔滨工业大学 (中国) 338 25,237 274 加州理工学院 (美国) 19 2,648 314 韩国航空宇宙研究院 (韩国) 436 2,739 72
空中航行危险 RWY 07/25: BRA 在 THR 07 和 25 250 米处,高度 9 厘米 在距左边缘 27.5 米处有标记的 OBST(着陆光学系统) 正在使用的 RWY(高度 10 英尺 ASFC)位于距 THR 07 185 米和距 DTHR 25 198 米处 纺织拦阻索高度 9 厘米,距 THR 07 114 米和距 DTHR 25 8 米处 LOC 天线 10 英尺 ASFC,位于 150 米 THR 07,需要特别注意进近 特殊程序和说明 A/A 专为根据航空 MIL 协议授权用户保留: LORIENT CTR 的 ARR、DEP 和 TRANSIT 程序: 当 ARR 时,要求 CLR 在飞越前 5 分钟进入 LORIENT APP 的 D 类空域入口点除非 ATC 另有指示,否则应以 1000 英尺 AMSL 的高度飞越入口点和航线(在 S 和 SL 之间过境的特殊情况:1500 英尺 AMSL)CTR 飞行限制:避免飞越位于 LOR 106°、区域边缘、靠近池塘的野生动物养殖场(47°42'51''N - 003°10'24''W)
RWY 11:以 4.7%(1)的速度爬升 RM 111°,直至 5000(4114)。在 1500(614)处直接上坡至航路安全高度。 (1)理论爬升坡度,确定障碍物,距离 DER 728 米、轴线右侧 116 米处的 993 英尺树。如果我们忽略这个障碍,位于 Ballon de Servance 的 4186 英尺(3300 英尺)的起伏,在 081° 处,距离 LXI 17.8 海里,产生 4.7% 的坡度,最高可达 5000(4114)。 RWY 29:以 5.4%(1)的速度爬升 RM 291° 至 970(118),然后以 4%(2)的速度爬升至 5000(4148)。在 1500(648)处直接上坡至航路安全高度。 (1)理论爬升坡度,确定障碍物,距离 DER 552 米、轴线左侧 120 米处有 950 英尺的树。 (2)理论爬升坡度,确定障碍物,地势高程 4186 英尺(3300 英尺),位于 Ballon de Servance,081°,距 LXI 17.8 海里。
NRCD Jt Dir,Sabitha M;Addl Dir,AP Singh 和顾问;SQ Dir,R Singh;SBM(城市),S Nayak)NMCG(DG,RR Mishra 和董事)NWM(MD,A Kumar;顾问,SK Arora)CWC(Dir,AK Sinha;C Eng P&D)CGWB(主席,GC Pati,技术秘书,P Sharma;科学家,A Asokan,RK Ray)Niti Aayog(顾问,Avinash Mishra)MoHUA(AMRUT Jt Secy,D Thara;技术官员,Sathishkumar S)MoEFCC(Jt Sec,Jigmet Takpa,Dr Ashish)CPCB(主席,SD Meena;成员秘书,P Gargava;AD,AK Vidyarthi;R Satavan; CB Chourasia,A Sudhakar)CPHEEO(顾问,D Dhinadhayalan,VK Chaurasia)MoAFW(Jt Sec,N Priyadarshee,Jt Sec,A Gautam)MoP(副秘书,AS Bisht)
ICAO Doc xxxx 电子飞行包手册 EASA AMC 20-25 电子飞行包 (EFB) 的适航性和操作注意事项 EASA AMC 25.1581 附录 1 - 计算机化飞机飞行手册 EASA AMC 25.1309 系统设计和分析 EASA AMC 25-11 电子驾驶舱显示器 EUROCAE ED-130() 机载便携式电子设备 (PED) 使用指南 EUROCAE ED-12() 机载系统和设备认证中的软件注意事项 EUROCAE ED-14() 机载设备的环境条件和测试程序 EUROCAE ED-76() 航空数据处理标准 EUROCAE ED-80() 机载电子硬件设计保证指南 UL 1642 美国保险商实验室公司 (UL) 锂电池安全标准 FAA AC 120-76() 电子飞行包计算设备的认证、适航及运行批准指南 RTCA DO-294() 允许在飞机上传输便携式电子设备 (T-PED) 的指南 RTCA DO-311() 可充电锂电池系统的最低运行性能标准 ETO (第 553 章) 电子交易条例 ETO (豁免) 命令 电子交易 (豁免) (修订) 命令 2013 年 (第 553B 章) 航空(香港)条例 1995 年 航空导航 (香港) 命令 1995 年
eymard dela cruz / jun。< / div>26,23 / g:\ Project \ 27000 \ 27000 \ 27087_hwy1a-22_interim_interchange \ 02_CADD \ 20_DRAFTING \ 201_skethes \ 27087_SK253
10 GBIT S -1单极量子量子hamza dely +,Thomas Bonazzi +,Olivier Spitz,Etienne Rodriguez,Djamal Gacemi,Yanko Todorov,Yanko Todorov,konstantinos pantzas,gruegoire lian lian lian lian lian gayne gbit S -1自由空间数据传输Linfield,FrédéricGrillot,Angela Vasanelli,Carlo Sirtori* +这些作者对这项工作也同样贡献了H. Dely,T。Bonazzi,E。Rodriguez博士,D。 NEUniversité,de Paris大学,24 Rue Lhomond,75005 Paris,法国电子邮件:carlo.sirtori@ens.fr O. Spitz 博士、F. Grillot 教授 LTCI、巴黎电信、巴黎综合理工学院,19 Place Marguerite Perey,Palaiseau,91120,法国 K. Pantzas 博士、G. Beaudoin、I. Sagnes 博士 巴黎萨克雷大学纳米科学与纳米技术中心 - CNRS - 巴黎南大学,10 Boulevard Thomas Gobert,91120 Palaiseau,法国 L. Li 博士、AG Davies 教授、EH Linfield 教授 利兹大学电子与电气工程学院,Woodhouse Lane,利兹 LS2 9JT,英国 关键词:量子器件、中红外、自由空间数据传输
©2020 Thales Alenia Space UK UK LTD本文所表达的观点绝不可以反映欧洲航天局的官方意见/////////3