重金属是严重危险的污染物,由于食物链中的积累,公共卫生造成了急性危险。在水相和河流系统中的沉积物之间解密其运输机制,不仅对于追踪其排放源至关重要,而且对于制定补救策略和可持续发展措施以保护水生生态系统至关重要。这项研究对越南北部关键经济区的一部分Hai Duong的市政河道系统进行了全面而有条理的研究。调查结果表明,高风险元素主要从城市径流,污水排水和工业废水排放中解放出来,而低风险金属主要归因于岩性起源。这些观察结果将为地方当局提供有价值的参考,以实施在Hai Duong Province地面水域管理有毒金属的及时监督和解决方案。
摘要 — 本文展示了一种使用垂直自旋转移力矩磁隧道结的新型磁传感器。传感元件呈圆柱形,直径为 50 纳米,据我们所知,是迄今为止报道的最小的磁传感器之一。本文介绍了传感元件和相关信号处理电子设备的工作原理,它们提供与外部磁场成比例的信号。详细介绍了实验结果,并将其与最先进的商用集成磁传感器以及基于磁隧道结的具有可比尺寸的已发布的磁阻传感器进行了比较。所开发的传感器的测量灵敏度为 1.28 V/T,动态范围达到 80 mT。测得的噪声水平为 21.8 µT/√Hz。描述并比较了所提出的传感器的两种不同工作原理,一种基于时间数字转换器,另一种基于脉冲宽度调制信号。这两种方法都只需要标准的微电子元件,适用于将传感元件与其调节电子设备单片集成。需要对传感元件以及调节电子器件进行后续改进,以进一步降低噪声水平。传感元件及其调节电子器件与磁性随机存取存储器制造中已经使用的制造工艺兼容。这为大规模生产开辟了道路,并满足了消费电子、汽车、工业传感、物理实验或医疗设备等各种市场的需求。
更广泛的上下文电池供电的电动汽车是将运输集成到电网中的有前途的解决方案。但是,尚未广泛采用电动汽车的消费者,部分原因是成本较高,车辆行驶里程较小以及充电的不便。可以鼓励使用电动汽车的新电池化学的重要目标包括低成本,大型驾驶范围,许多周期和长架子。带有石墨阳极的电流,可充电的锂离子电池的能量密度太低,无法达到前两个目标,但是诸如硅等不同的阳极化学物质可以实现成本和范围目标。在硅阳极可以替代石墨阳极之前,仍然存在障碍,但是,由于静电期间硅体积较大及其高反应性表面的大量膨胀,这两者都会导致不可逆的容量损失。
摘要:长期以来,显微镜技术的进步一直推动着神经科学的重大进步。超分辨率显微镜 (SRM) 也不例外,它以打破光学显微镜的衍射障碍而闻名。SRM 可以实现纳米结构的解剖设计和动力学,而这些是传统光学显微镜无法解决的,从神经元和神经胶质细胞的精细解剖结构到它们内部的细胞器和分子。在这篇评论中,我们将主要关注一种特定的 SRM 技术(STED 显微镜),并解释我们多年来为使其在神经科学领域实用和可行而取得的一系列技术进展。我们还将重点介绍关于神经元和神经胶质细胞动态结构-功能关系的几项神经生物学发现,这些发现说明了活细胞 STED 显微镜的价值,尤其是当与其他现代方法相结合时,可以研究脑细胞的纳米级行为。
* 通讯作者:moises.garin@uvic.cat 我们报告了一种通过在纳米颗粒/基底界面的弯月面中毛细管冷凝在纳米尺度上局部输送气相化学蚀刻剂的方法。该过程简单、可扩展且不需要对纳米颗粒进行功能化。此外,它不依赖于材料的任何特定化学性质,除了溶液是水性的和所涉及表面的润湿性之外,这应该使其能够应用于其他材料和化学品组合。具体而言,在这项工作中,我们通过使用暴露于 HF 蒸汽的自组装单层聚苯乙烯颗粒定期对 SiO 2 层进行图案化来演示所提出的工艺。然后使用图案化的 SiO 2 层作为掩模来蚀刻 Si 中的倒置纳米金字塔图案。已经证明了硅纳米图案化适用于从 800 nm 到 100 nm 的颗粒尺寸,对于 100 nm 纳米颗粒,实现了尺寸小至 50 nm 的金字塔。
拓扑优化图1(a)描绘了TO的物理模型。拓扑设计空间由400×400×100 nm 3的矩形区域定义,这是测量1的较大电磁场模拟区域的一部分。1 µm×1。1 µm×600 nm。在设计空间下方放置了100 nm厚的SIO 2底物。使用具有高斯模式的R -CPL使用几乎薄的透镜(Na 0.25),以垂直角度将其定向到底物表面上。位于底物表面上的梁腰部在底物表面的直径为982 nm。波长为532 nm,距离基板的光源位于420 nm。tio 2被选为设计材料,其折射率为2。51185 + 0。01128 i在设计波长处,通过椭圆测量法对通过原子层沉积制备的118 nm厚的TIO 2膜进行了实验测量。有限差频域法被用作麦克斯韦求解器[17,40]。用4 nm cu-bic网格离散模拟区域,将最外面的五层分配为完美匹配的层,该层吸收了仿真空间内单个对象散射的电磁场。在TO框架内,配偶的介电函数桥接了设计材料E R和周围空气介质(E 0)的值,形成为E R = E 0 +ρ(E M-e 0)。在这里,设计变量ρ是连续的真实标量,范围为0至1。文献[16,40]中记录了TO的更多细节。我们的设计变量的初始值被设置为随机数字,均匀跨越0.5至0.7。我们采用了基于梯度的优化算法将设计值ρ向0或1驱动,其中ρ= 1的分布代表优化的结构。另外,为了鼓励设计变量的二线化,我们使用sigmoid函数实现了一种投影过滤方法。计算是在具有NVIDIA TESLA V100 SXM2(32 GB)的GPU节点上进行的。
• BE 2800 Biomaterials I: Fundamental Materials Science and Engineering (3) Prereqs: BE2400 • BE 3800 Biomaterials II: Properties and Biological Interactions (3) Prereqs: BE2700(C) and BE2800 • BE 4300 Polymeric Biomaterials (3) Prereqs: BE3800 • BE 4330 Biomimetic Materials (3) Prereqs: BE3350和BE3800•为4335个智能聚合物(3)前提:BE3350和BE3800•为4670 Micro&Nano Technologies(3)PREREQS:BE3700•BE 3700•BE 4700生物传感器:制造和应用程序:制造和应用程序:3)或BL1040或BE2400)或(BL1200和BL1210)或(BL1400和BL1410)以及(CH2410或CH2420)•BL 4020生物化学II(3)预先QS:BL3020•BL3020•BL 4030 Molecular Biology(BL 4030分子生物学(3)PREREQS:3) (BL3020或CH4710)•BL 4035生物影像剂*(2)预言:无•BL 4142生物电子显微镜*•CH 3520物理化学II-分子结构(3)预言:CH1122或(CH1122或(CH1160和CH1160和CH1161)和MA3160和PH22200(CH22200) •CH 4320无机化学II(3)预告片:CH4310•CH 4560计算化学(3)PREREQS:CH3520•CH/CM 4610聚合物科学介绍(3)预先Q.1122或(CH1122或(CH1160和CH1161)
PELIICAEN(纳米级离子注入控制和分析研究平台)装置是一种独特的设备,它拥有所有的原位超高真空设备(聚焦离子束 (FIB) 柱、二次电子显微镜 (SEM)、原子力和扫描隧道显微镜 (AFM/STM)),以及它在材料上的纳米结构性能。该装置最近配备了自己的电子回旋共振离子源、使用气动振动绝缘体的新型位置控制平台和快速脉冲装置。它的性能得到了大幅提升,可以选择多种离子,离子注入深度可调至几百纳米,图像分辨率低至 25 纳米,样品上的离子束尺寸低至 100 纳米。凭借所有这些设备,PELIICAEN 装置在执行和分析离子注入和表面改性方面处于国际前沿。
在植物根部的微生物定植期间,特异性微生物激活的过程的识别受到元文字组学的技术约束的阻碍。这些包括缺乏参考基因组,数据集中宿主或微生物rRNA序列的高度表示,或难以实验验证基因功能。在这里,我们将无菌丝的丁香虫thaliana重新定殖,具有合成但代表性的根微生物群,可释放106个基因组序列的细菌和真菌分离株。我们使用了多个王国rRNA耗竭,深度RNA测序和读取参考微生物基因组来分析丰富的殖民者的植物元转录组。我们确定了在土壤界面差异调节的3,000多个微生物基因。翻译和能量生产过程在植物中持续激活,它们的诱导与细菌菌株在根中的丰度相关。最后,我们使用靶向诱变表明,在丰富的细菌菌株之一(一种可遗传可触及的杜鹃杆菌)中,需要多种细菌持续诱导的几个基因。我们的结果表明,菌群成员激活应变特异性过程,但也可以激活植物根的常见基因集。
本文首先对开关配置中的 MOS 器件进行了深入研究。然后分析了改进的开关架构,以便更好地将它们集成到复杂的应用中 [4-8]。强调了使用串行接口进行数字控制的模拟开关的优势。具体来说,我们专注于由数字控制块启用或禁用的多通道开关的设计。展示了为实现而设计的内部结构、主要电气参数和布局。这些架构的验证是通过数字和晶体管级模拟、静态时间分析和噪声研究完成的。我们将在一个 8 通道系统上介绍当前的结果,该系统的工作频率从 2.5 MHz [6] 增加到 55 MHz 时钟信号,与逻辑电平的偏差很小 [7]。