Toll样受体(TLR)是先天免疫细胞(包括巨噬细胞和树突状细胞)中膜结合的最佳受体。在识别出源自病原体和修饰的自源分子的特定配体后,TLR会触发细胞内信号传导级联反应,涉及各种适配器蛋白和酶,从而产生了促炎和抗菌反应的产生,这些反应是通过诸如核因子 - 核因子诸如核因子κB之类的转录激活的激活。TLR依赖性信号通路在先天免疫反应期间受到各种负调节剂的严格调节。调节这些调节途径和信号分子的努力可能会通过基于TLR的治疗发展新的治疗策略。本文回顾了TLR在先天免疫中的作用,还强调了新描述的对TLR依赖性信号通路的调节。
原理:胶质母细胞瘤(GBM)是最具侵略性的原发性脑癌类型,并包含有助于肿瘤生长和治疗性抗性的自我更新GBM干细胞(GSC)。然而,对GSC治疗耐药性的分子决定因素知之甚少。方法:我们对患者衍生的GSC中的去泛素化酶(DUB)进行了全基因组分析,并使用基因特异性shRNA来识别有助于GSC存活和放射线抗性的重要DUB基因。随后,我们采用质谱和免疫沉淀来显示USP14和AlkBH5之间的相互作用,并确定了上游激酶MST4,这对于碱性化和稳定碱的稳定至关重要。此外,我们进行了集成的转录组和M 6 A-SEQ分析,以发现影响GSC辐射势的ALKBH5的关键下游途径。结果:我们的研究证明了去泛素酶USP14在维持GSC的干性,致癌潜力和放射线的重要作用。USP14通过防止其K48连接的泛素化和通过HECW2降解M 6 A脱甲基碱ALKBH5。通过MST4在丝氨酸64和69处的AlkBH5磷酸化增加了其与USP14的相互作用,从而促进了AlkBH5的去泛素化。此外,ALKBH5以取决于YTHDF2的方式直接与USP14转录本相互作用,建立了一个正反馈环,该反馈环维持GSC中两种蛋白质的过表达。暴露于电离辐射(IR)后,在GSC中进一步刺激了此信号级联。MST4-USP14-AlkBH5信号通路对于增强干细胞样性状,促进DNA双链断裂的同源重组修复以及促进GSC中的放射性和肿瘤性。用小分子IU1抑制USP14会破坏ALKBH5去偶联性,并提高IR疗法对GSC衍生的脑肿瘤异种移植物的有效性。结论:我们的结果将MST4-USP14-AlkBH5信号通路确定为治疗GBM的有前途的治疗靶标。
计算神经科学依靠梯度下降 (GD) 来训练大脑的人工神经网络 (ANN) 模型。GD 的优势在于它能够有效地学习困难的任务。然而,它产生的 ANN 在现象学上与生物学的拟合度较差,因此它们作为大脑模型的相关性较低。具体来说,它违反了戴尔定律,允许突触从兴奋性变为抑制性,并导致突触权重不服从对数正态分布,这与实验数据相矛盾。在这里,从优化理论的第一原理出发,我们提出了一种替代学习算法,即指数梯度 (EG),它尊重戴尔定律并产生对数正态权重,而不会失去使用梯度学习的能力。我们还表明,在与生物学相关的设置中,EG 的表现优于 GD,包括从稀疏相关信号中学习和处理突触修剪。总之,我们的结果表明,EG 是一种使用 ANN 建模大脑的卓越学习算法。
通过使用AI分析语言数据,研究有关语言获取和学习外语的知识可以提供研究。Moritz Dittmeyer博士是哲学家和物理学家。他在歌德实验室语言中为歌德学院工作,并为学习语言开发AI应用程序。“我们去年开发了印加人。这是一位智能更正助手,他支持教师对生产写作任务的更正和评估。inka具有自己的集成语音模型。校正助手接受了各种机械和深度学习方法的培训。为此,我们使用了一百万个文本数据。收集到的培训评论和更正截然不同。您并不总是完全可用。通过新的培训数据,预测越来越好。 ”
在这个现代化的时代,个人在日常日程安排中处理了许多事情,这导致生活中压力大的事件的增加。有时要特别注意并有效地管理它很重要。压力是一种医疗状况,但可以在没有任何内部干预措施的情况下进行管理。对于这种心理情况,据认为,如果在适当的时间进行特殊和谐的时间进行治疗,RAGA治疗有效。这就是为什么Raga疗法也称为治疗疗法的原因。拟议的研究旨在观察Kalyani Raga在女性Wistar大鼠焦虑相关的疾病中的影响。Kalyani Raga是Melakarta Raga的类型,是Carnatic音乐的一部分。我们研究了两组10只女性Wistar大鼠在轻度压力源下7天。在一组中,我们与Kalyani Raga进行了干预,并观察到了行为模式,而另一组则在没有任何干预的情况下观察到了另一组。
摘要在这项研究中,我们研究了使用非相似性分析考虑了磁流失动力学生物感染微极纳米流体的能力,考虑了soret和dufour效应的影响。我们的目标是预测在生物和工业系统中观察到的复杂热量和传质现象。近年来,能源应用的显着进步刺激了我们的询问和探索。为增强热导率并探索潜在的生物相容性,我们将血液用作碱流体,含有银(Ag)和氧化铜(CUO)。这种独特的配置提供了对热性能的改进控制,并支持探索各个领域的高级应用程序。在我们的分析中,我们还考虑了诸如粘性耗散,soret和dufour效应的影响,磁场的存在以及热产生的因素。通过使用合适的非相似转换,管理PDE及其相应的边界条件将转化为无量纲形式。修改模型产生的结果是通过应用局部非相似方法的应用,扩展到截断的第二度,并与有限差分代码(BVP4C)集成在一起。此外,在分析的流动场景中,不同因素对流体流动,微旋转,热传递,体积分数和微生物特性的影响通过视觉表述(在达到令人满意的结果与先前研究中报道的结果之间达成令人满意的一致性)之后,通过视觉表述进行了检查和检查。表旨在为阻力系数和Nusselt编号提供数值变化。尽管有一定的局限性,仍对先前发表的工作进行了比较分析,以评估数值方案的准确性。可以证明,材料参数k对微极流体动力学有两种影响:它增加了微旋转曲线,从而导致较高的流体刚度,并降低了响应角度磁场的速度曲线。此外,在生物相关的微极流体中,较大的K值与温度谱升高相关,显示出通过提高的流体速度和动能生产来提高传热效率。生物对流微极流体中的速度曲线随较高的磁场值(M)而上升,突出了磁场方向的重要性,以彻底理解这些系统中流体的行为。增加Dufour效应(DU)会提高温度曲线,而增加soret效应(SR)降低了浓度曲线。此外,增加生物对流的路易斯数(LE)会导致移动的微生物浓度较高,但增加了PECLET数量(PE)会导致微生物浓度下降。我们研究的主要重点是设计独特的转型,以解决投资下的特定问题的复杂性。这些转变旨在产生精确有效的结果,为纳米流体流的领域提供宝贵的见解,尤其是关于压溃疡问题的研究。
摘要 —与快乐、悲伤、恐惧、愤怒、厌恶和惊讶这六种基本情绪不同,用效价(正性 - 负性)和唤醒(强度)来建模和预测维度情感已被证明对于自然和现实世界设置更灵活、适用和有用。在本文中,我们旨在推断用户在不同难度级别(基线、简单、困难和压力条件)下从事多项工作类任务时用户的面部情感,包括(i)办公室环境,他们从事一项体力要求较低但需要更大精神压力的任务;(ii)流水线环境,需要使用精细运动技能;(iii)代表远程办公和电话会议的办公室环境。为了这个目标,我们首先设计了一项具有不同条件的研究,并收集了 12 个受试者的多模态数据。然后,我们用各种机器学习模型进行了几项实验,发现:(i)面部表情的显示和预测在非工作环境和工作环境中有所不同;(ii)使用在类似工作环境中捕获的数据集可以提高预测能力;(iii)片段级(光谱表示)信息对于改善面部表情预测至关重要。索引术语——情感状态、类似工作的任务、工作环境中的情绪
©世界卫生组织(2024) - 该文件未发给公众,所有权利均由世界卫生组织(WHO)保留。未经世卫组织事先书面许可,不得审查,摘要,引用,复制或翻译该文档。未经世卫组织事先书面许可,本文档的任何部分都不能存储在检索系统中,或以任何形式或任何方式传输。命名作者在文档中表达的观点仅是这些作者的责任。*所提供的PRESTEM被标记为官方词干(“在选择国际非专有物质名称中使用茎”,2024年,ISBN 9-789240-099388)目前,它们可供申请人提供信息和潜在的指导。
注意力缺失很常见,与走神有关,走神是指注意力转移到与正在进行的任务和环境需求无关的想法上,或者与大脑空白有关,大脑空白是指意识流本身停止。为了了解注意力缺失背后的神经机制,我们研究了健康参与者在执行任务时的行为、主观体验和神经活动。随机干扰促使参与者将他们的精神状态表示为专注于任务、走神或大脑空白。使用高密度脑电图,我们在此报告空间和时间局部慢波,这是一种神经活动模式,是睡眠过渡的特征,它伴随着行为标记的缺失,并先于走神和大脑空白的报告。慢波的位置可以区分迟钝和冲动行为,以及走神和大脑空白。我们的结果表明,注意力缺失有一个共同的生理起源:清醒大脑中出现局部睡眠样活动。
迄今为止,荷兰已批准以下五种 COVID-19 疫苗用于主动免疫 SARS-CoV-2:BioNTech/辉瑞 (Comirnaty®)(1)、Moderna (Spikevax®)(2)、阿斯利康 (Vaxzevria®)(3)、杨森 (Jcovden®)(4) 和 Novavax (Nuvaxovid®)(5)。BioNTech/辉瑞和 Moderna 均为 mRNA 疫苗,阿斯利康和杨森均为载体疫苗,Novavax 为含有皂苷基基质-M 免疫刺激佐剂的蛋白质亚单位疫苗 (1-5)。自荷兰启动针对 SARS-CoV-2 的大规模免疫计划(2021 年 1 月)以来,截至 2023 年 10 月 1 日最新 Corona 仪表板更新,已有 12,370,518 人接受了基础疫苗接种,4,187,145 人在 2022 年秋季的最后一轮重复疫苗接种中接受了重复剂量接种(6、7)。截至 2023 年 8 月 16 日,荷兰药物警戒中心 Lareb 直接从患者和医疗保健专业人员那里收到了 254,293 份有关 COVID-19 疫苗的报告。大多数报告涉及 BioNTech/Pfizer(127,995),其次是 Moderna(53,497)、AstraZeneca(38,036)、Janssen(15,099)和 Novavax(60)。荷兰药物警戒中心 Lareb 旨在调查是否存在特定的临床描述,可以表明迄今为止未知的与 COVID-19 疫苗接种相关的长期不良反应。总共收到 2,282 份报告,共包含 5,245 起长期免疫后不良事件 (AEFI)。长期 AEFI 被定义为在接种 COVID-19 疫苗后发病时间为 28 天或更短且持续时间为 6 个月或更长时间的 AEFI。仅报告恢复的 AEFI 的持续时间。对于未恢复和恢复中的 AEFI,持续时间的假设是通过从报告日期中减去 AEFI 的开始日期来得出的。不符合此条件的报告不会被选中。此外,未选择包含 COVID-19 感染后 28 天内发病的长期 AEFI 的报告,以降低报告的症状与 COVID-19 感染有关的可能性。此外,未选中预计需要很长时间才能恢复的 (严重) AEFI 报告,例如格林-巴利综合征 (GBS) 或各种形式的血栓形成。报告最多的长期 AEFI 是疲劳 (n=531)、肌痛 (n=399)、关节痛 (n=382)、头痛 (n=283) 和不适 (n=250)。较少但同样频繁报告的长期症状是呼吸困难 (n=86) 和心悸 (n=66)。此外,还报告了其他“长期类似 COVID 症状”,例如感觉异常 (33)、肌肉无力 (23) 和注意力障碍 (24)。报告包含多种长期 AEFI 组合。为了了解重点关注何处,对所有选定的长期 AEFI 报告进行了探索性分析。对报告的 AEFI 组合进行了调查,以查看数据中是否存在临床聚集现象。临床评估人员审查了每组个案,以了解是否存在临床描述、患者是否接受过医疗专业人员的诊治、是否进行了诊断程序以及是否做出了诊断,以及其他信息要素。基于此审查,结合科学文献和新闻稿中关于长期 COVID 的病例描述,我们决定进一步重点分析类似长期 COVID 的症状 (8-11)。报告的选择根据前面提到的长期 COVID 病例描述,我们对 COVID-19 感染后长期 COVID 中常见的以下症状组进行了分类:周围神经症状、认知功能障碍症状、心血管症状(包括 POTS)、