1 美国华盛顿州西雅图华盛顿大学微生物学系,2 美国华盛顿州西雅图华盛顿大学华盛顿国家灵长类动物研究中心,3 美国蒙大拿州汉密尔顿市美国国立卫生研究院落基山实验室国家过敏和传染病研究所内部研究部病毒学实验室,4 美国蒙大拿州汉密尔顿市美国国立卫生研究院落基山实验室国家过敏和传染病研究所内部研究部落基山兽医分部,5 美国华盛顿州西雅图弗雷德哈钦森癌症研究中心疫苗和传染病部,6 美国华盛顿州西雅图 HDT Bio,7 美国华盛顿大学生物化学系
摘要 皮层内微刺激 (ICMS) 常用于许多实验和临床范例;然而,它对神经元激活的影响仍未完全了解。为了记录清醒非人类灵长类动物皮层神经元对刺激的反应,我们在通过植入三只恒河猴初级运动皮层 (M1) 的犹他阵列提供单脉冲刺激的同时记录了单个单位活动。输送到单通道的 5 到 50 m A 之间的刺激可靠地引发了整个阵列中记录的神经元尖峰,延迟长达 12 毫秒。ICMS 脉冲还会引发一段长达 150 毫秒的抑制期,通常在初始兴奋反应之后发生。电流幅度越高,引发尖峰的概率就越大,抑制持续时间也越长。在神经元中引发尖峰的可能性取决于自发放电率以及其最近尖峰时间和刺激开始之间的延迟。 2 到 20 Hz 之间的强直重复刺激通常会调节诱发尖峰的概率和抑制的持续时间;高频刺激更有可能改变这两种反应。在逐次试验的基础上,刺激是否诱发尖峰并不影响随后的抑制反应;然而,它们随时间的变化通常是正相关或负相关的。我们的研究结果证明了皮质神经对电刺激反应的复杂动态,在将 ICMS 用于科学和临床应用时需要考虑这些动态。
关于动物认知进化的主要假设强调了特定在影响社会生态环境塑造认知的作用。然而,空间通常是由同一生态行会的多个物种同时占据的。这些同胞物种可以争夺食物,从而刺激或阻碍认知。将大脑大小视为认知的代理,我们测试了物种象征是否影响了肉类灵长类动物的认知进化。我们首先回顾了淡韧带灵长类动物谱系之间同学的进化历史。然后,我们考虑了或不考虑物种的同胞,拟合了节俭喷泉灵长类动物的几个大脑区域大小的进化的系统发育模型。我们发现,最好使用不考虑辅助作用的模型来使用直接信息处理中使用的整个大脑或大脑区域的演变。相比之下,考虑物种sympa-尝试最佳的模型可以预测与与社会生态环境相互作用的长期记忆相关的大脑区域的演变,其大小的减少越高。我们推测,通过产生强烈的食物耗竭,可能导致资源时空时空的过度复杂性,以抵消高认知能力的利益,并且/或可能会驱动利基分配和特殊性,从而诱导下脑区域尺寸。此外,我们报告说,在伴奏中,灵长类动物的多样化较慢。这项比较研究表明,物种同胞显着促进了灵长类动物的进化。
怀孕期间感染病毒或细菌感染的女性患有神经发育或精神疾病的儿童的风险增加。母体免疫反应可能介导了母体感染的作用,因为临床前动物模型已经证实,母体免疫激活(MIA)会导致后代大脑和行为发展的持久变化。本研究试图确定头三个月期间的MIA暴露于背外侧前额叶皮层(DLPFC)(DLPFC)中的神经元形态和从MIA暴露和对照的男性rheSus Monkey(Macaca Mulatta)获得的脑组织中的脑组织。相对于对照组,在DLPFC上和上层中,Div> MIA暴露的后代显示了在DLPFC上和上层中锥体细胞中的神经元树突分支增加,在第一和第二学期暴露于孕产妇感染的后代之间没有显着差异。此外,与对照相对于对照的MIA阳离子后代,DLPFC额叶层中根尖树突的直径显着降低,而与三个月暴露不利。相比之下,暴露于MIA的后代的海马神经元形态的改变并不明显。这些发现表明母体免疫
1 渥太华大学大脑和思维研究所,加拿大安大略省渥太华 2 渥太华医院研究所,加拿大安大略省渥太华 3 伦敦健康科学中心临床神经科学系,西部大学,加拿大安大略省伦敦 4 西部大学西部神经科学研究所,加拿大安大略省伦敦 5 西部大学舒立克医学和牙科学院生理学和药理学系,加拿大安大略省伦敦 6 哥伦比亚大学扎克曼思维大脑行为研究所,美国纽约州纽约 7 哥伦比亚大学理论神经科学中心,美国纽约州纽约 8 西部大学舒立克医学和牙科学院生理学、药理学和精神病学系,加拿大安大略省伦敦 9 渥太华医院研究所神经外科分部,加拿大安大略省渥太华 * 任何通讯均应寄给作者。
摘要 准确提取磁共振成像 (MRI) 数据中的脑组织对于分析大脑结构和功能至关重要。虽然已经优化了几种常规工具来处理人脑数据,但目前还没有可推广的方法来提取啮齿动物、非人类灵长类动物和人类的多模态 MRI 数据的脑组织。因此,开发一种灵活且可推广的方法来提取跨物种的整个脑组织将使研究人员能够更有效地分析和比较实验结果。在这里,我们提出了一个领域自适应的半监督深度神经网络,称为脑提取网络 (BEN),用于提取跨物种、MRI 模态和 MR 扫描仪的脑组织。我们已经在 18 个独立数据集上评估了 BEN,包括 783 个啮齿动物 MRI 扫描、246 个非人类灵长类动物 MRI 扫描和 4601 个人类 MRI 扫描,涵盖五个物种、四种模态和六种具有不同磁场强度的 MR 扫描仪。与传统工具箱相比,BEN 的优越性体现在其稳健性、准确性和通用性上。我们提出的方法不仅为跨物种提取脑组织提供了通用解决方案,而且显著提高了图谱配准的准确性,从而有利于下游处理任务。作为一种新型的全自动深度学习方法,BEN 被设计为一种开源软件,可在临床前和临床应用中实现跨物种神经影像数据的高通量处理。
Andrew M. Clark 1 、Alexander Ingold 1 、Christopher F. Reiche 2 、Donald Cundy III 1 、4 Justin L. Balsor 1 、Frederick Federer 1 、Niall McAlinden 3 、Yunzhou Cheng 3 、John D. Rolston 4, 5 、Loren Rieth 5,6 、Martin D. Dawson 3 、Keith Mathieson 3 、Steve Blair 2†* 、6 和 Alessandra Angelucci 1†* 7
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2023年2月16日。 https://doi.org/10.1101/2022.02.09.479779 doi:Biorxiv Preprint
非人灵长类动物神经活动动态的闭环光遗传学控制 B. Zaaimi 1,2,& 、M. Turnbull 1,& 、A. Hazra 1 、Y. Wang 3 、C. Gandara 1 、F. McLeod 1 、EE McDermott 1 、E. Escobedo-Cousin 4 、A. Shah Idil 5 、RG Bailey 4 、S. Tardio 4 、A. Patel 4 、N. Ponon 4 、J. Gausden 4 、D. Walsh 1 、F. Hutchings 3 、M. Kaiser 3,6,7,8 、MO Cunningham 9 、GJ Clowry 1 、FEN LeBeau 1 、TG Constandinou 10 、SN Baker 1 、N. Donaldson 5 、P. Degenaar 4、A. O'Neill 4、AJ Trevelyan 1 和 A. Jackson 1,* 1 纽卡斯尔大学生物科学研究所,纽卡斯尔 NE2 4HH,英国。2 当前地址:阿斯顿大学生命与健康科学学院,伯明翰 B4 7ET,英国。3 纽卡斯尔大学计算学院,纽卡斯尔 NE4 5TG,英国。4 纽卡斯尔大学工程学院,纽卡斯尔 NE1 7RU,英国。5 伦敦大学学院医学物理与生物医学工程系,伦敦 WC1E 6BT,英国。6 NIHR,诺丁汉生物医学研究中心,诺丁汉大学医学院,NG7 2UH,英国。7 彼得·曼斯菲尔德爵士影像中心,诺丁汉大学医学院,NG7 2UH,英国。8 上海交通大学医学院,上海,中国。 9 爱尔兰都柏林圣三一学院医学院,都柏林 2。10 英国帝国理工学院电气与电子工程系,伦敦 SW7 2AZ,英国。 *通讯作者,andrew.jackson@ncl.ac.uk & 这些作者贡献相同。电神经刺激可有效治疗神经系统疾病,但相关的记录伪影通常将其应用限制在开环刺激。然而,通过将并发电记录和光遗传学配对可以实现对大脑活动的实时和连续闭环控制。在这里,我们表明,使用兴奋性视蛋白的闭环光遗传刺激能够精确操纵转基因小鼠和麻醉非人类灵长类动物脑切片中的神经动力学。该方法在静止组织中产生振荡,增强或抑制活动组织中的内源性模式,并调节由惊厥剂 4-氨基吡啶引起的癫痫样爆发。光学刺激相位依赖效应的非线性模型再现了与癫痫发作振荡相关的局部场电位周期调制,癫痫发作相空间轨迹的变异性和熵的系统性变化证明了这一点,这与癫痫发作持续时间和强度的变化相关。我们还表明,可以使用结合发光二极管的皮质内光极来实现闭环光遗传神经刺激。闭环光遗传学方法可能具有转化治疗应用。许多神经系统疾病会导致网络动态改变,特征是脑区内和脑区之间振荡同步性异常低或高 1 。神经调节疗法,例如深部脑刺激 (DBS),通常会提供“开环”电刺激序列,试图破坏病理模式并将脑活动保持在一定功能状态范围内。然而,从控制理论的角度来看,开环方法通常不如包含基于系统实时状态的反馈的闭环控制 2 。因此,如果通过持续的电生理测量控制神经调节疗法,可能会更有效 3,4 ,例如增强有益的振荡或破坏病理性脑状态,如癫痫发作。不幸的是,闭环神经刺激的许多潜在应用受到与电刺激相关的大量伪影的阻碍,尤其是在监测和调节相同的局部神经元群时。这通常会将控制策略限制为简单的决定,即打开或关闭原本连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传递,因此可以通过脑信号实时连续调制光刺激,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但迄今为止,闭环光遗传刺激的实验演示仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们的目标是通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们比较了通过外部光源传递的光刺激和包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装
图 1 – DCFHP 设计和验证。(A) DCFHP 示意图以红色显示了将 S∆C-Fer 转化为 DCFHP 所做的修改。受体结合域 (RBD)、N 端域 (NTD)、S1/S2 切割位点、S2' 切割位点、融合肽 (FP)、七肽重复 1 (HR1),如注释所示。(B) SDS-PAGE 凝胶显示纯化的 DCFHP 以单体形式运行,分子量达到预期的 kDa(梯形图,左侧显示)。(C) 从 SEC-MALS 确定的 UV(黄色)和光散射(灰色)轨迹显示了均匀的纳米颗粒峰,其近似分子量(虚线)为 3.4MDa。(D) DCFHP 的 3D 重建低温电子显微镜密度图,采用八面体对称性细化。 (E) 用 S∆C-Fer 或 DCHFP(由 500 µg 明矾和 20 µg CpG 1826 配制)免疫小鼠后,第 21 天血清对武汉-1 SARS-CoV-2 假病毒具有类似的强效中和作用,单次免疫后即可达到。在表达 ACE2 和 TMPRSS2 的 HeLa 细胞系中评估中和滴度。10 只小鼠的数据以几何平均滴度和标准差表示。测定定量限 (LOQ) 显示为虚线水平线。