缓冲氯化钠蛋白胨溶液的成分符合 USP/EP/BP/JP/IP(1-5) 的统一方法。建议使用此培养基制备稳定的测试菌株悬浮液,用于验证非无菌产品的微生物检测程序。使用标准化的稳定悬浮液可以确定该测试是否适用于在产品存在的情况下检测微生物。使用此溶液稀释/溶解不溶于水的非脂肪产品和水溶性产品。HMC 蛋白胨可作为营养源并保持细胞活力。培养基中的磷酸盐可作为良好的缓冲剂。氯化钠可保持渗透平衡。聚山梨醇酯可降低表面张力,还可使测试样品中存在的酚类化合物失活。据报道,卵磷脂和聚山梨醇酯 80 (Tween 80) 是中和剂,可使样品收集处的残留消毒剂失活 (6)。卵磷脂可中和季铵化合物,聚山梨醇酯80可中和酚类消毒剂、六氯酚、福尔马林和卵磷脂乙醇(7)。
植物化学物质是源自植物的生物活性化合物,在调节导致癌症和炎症的途径中发挥着重要作用,使其成为治疗干预的有希望的候选者。本综述探讨了各种植物化学物质在调节癌症和炎症发展和进展的关键机制方面的多方面潜力。这里讨论的各种植物化学物质包括多酚、黄酮类化合物、生物碱、萜类化合物和许多其他化合物,每种化合物都有不同的分子靶点和作用方式。本综述试图阐明和关联植物化学物质对与肿瘤发生和炎症反应有关的细胞信号通路的调节作用,强调基于植物化学物质的疗法对癌症预防和治疗以及控制炎症状况的重要性和潜力。通过探索基于植物化学物质的疗法在癌症预防、治疗和炎症方面的潜在应用,并强调其在调节关键调节机制方面的多种作用,本综述讨论了当前的研究前景、挑战以及利用植物化学物质作为抗癌和抗炎有效药物的未来方向。
添加肉桂提取物是为了改善酸奶的功能特性。酸奶的限制因素是保持分配过程中质量的困难。喷雾干燥技术适合在分发过程中保持酸奶的质量。这项研究旨在通过在喷雾干燥过程前后通过添加肉桂提取物来评估酸奶的特性和抗氧化活性。使用完全随机设计的阶乘模式2×3(提取水平和酸奶类型)进行了研究。评估样品的pH值,水活性,粘度,可滴定酸度,总乳酸细菌,通过DPPH抑制,总酚类化合物(TPC),营养素含量和感觉特性,抗氧化活性。通过扫描电子显微镜分析了从喷雾干燥过程中获得的酸奶粉的视觉外观。结果表明,pH,粘度,可滴定酸度,可行的乳酸细菌,蛋白质和灰分含量受到喷雾干燥过程的显着影响,而水分含量和TPC受到喷雾干燥和酸奶类型的显着影响。总体而言,在喷涂干燥过程之后,肉桂酸奶还原的水分仍然具有抗氧化能力和质量,根据印度尼西亚标准和法典满足了要求。
无花果果实是生物活性化合物的重要来源,例如类黄酮,苯甲醛,生物碱,萜类化合物和苯酚,它们是抗菌无花果果实作为类黄酮的来源,具有抗生素活性,与内部生物学植物的作用不可分割,使得内属菌丝的作用不可分割。研究包括内生细菌在内的微生物的多样性并不容易,因为环境中有99%的微生物是不可培养的物种,因此需要进行分析,能够研究而没有称为宏观概念的内生细菌的多样性。这项研究的目的是确定在这些内生细菌中有用的无花果水果和预测基因中内生细菌的多样性。研究方法指的是无花果组织DNA提取,16S rRNA基因扩增,电泳,下一代测序和使用操作分类学单元进行分析的研究方法。The results of species-level endophytic bacterial diversity obtained on Fig fruit (Ficus carica L.) varieties Gren Yordan are Weissella ghanensis, Weissella paramesenteroides, Ralstonia pickettii, Leuconostoc citreum, Pantoea stewartii, Gluconobacter cerinus, Lactococcus lactis.
人们越来越多地研究将红酵母用作脂质、脂肪酸衍生物和萜类化合物的生物生产宿主。人们已经开发了各种遗传工具,但尚未报道过着丝粒和自主复制序列 (ARS),而这两者都是维持稳定的游离质粒所必需的元素。在本研究中,使用靶标下切割并使用核酸酶释放 (CUT&RUN)(一种用于全基因组 DNA-蛋白质相互作用映射的方法)来识别与着丝粒组蛋白 H3 蛋白 Cse4(着丝粒 DNA 的标记)相关的红酵母 IFO0880 基因组区域。识别并分析了 15 个长度从 8 到 19 kb 不等的假定着丝粒,并对其中四个进行了 ARS 活性测试,但未显示 ARS 活性。这些着丝粒序列含有低于平均水平的 GC 含量,对应于转录冷点,主要是非重复的,并且共享一些残留转座子相关序列,但除此之外没有显示显著的序列保守性。未来在该酵母中识别 ARS 的努力可以利用这些着丝粒 DNA 序列来提高来自假定 ARS 元素的游离质粒的稳定性。
摘要:目前的研究旨在评估乳豆乳肌,Dioon Mejiae和Amanita caesarea对嗜热链球菌和Delbrueckii subsp的潜在影响。保加利亚的生存和暴露于不同恶劣条件(例如胆汁,酸,胃汁和溶菌酶)之后的表现,以模仿从口腔到肠道的消化系统。益生菌蛋白酶活性以评估蛋白水解系统。益生菌是在与植物材料混合的肉汤中培养的,并且在孵育后,将结果与对照样品进行了比较。因此,获得了植物材料的总酚类化合物,总类胡萝卜素化合物,抗氧化活性,糖含量和酸性,以讨论它们对益生菌存活的影响。结果表明,在胆汁耐受性测试中,阿甘那核对益生菌的生存产生了负面影响,并在蛋白酶活性测试中对保加利亚乳酸乳杆菌产生了积极影响。否则,与不同测试中的对照相比,其他植物材料并没有显着改变结果(p> 0.05)。因此,Solanum Mammosum和Dioon Mejiae在增加益生菌存活中没有显着作用(P> 0.05)。
摘要肠道菌群现在被认为是促进宿主健康调节的关键要素之一。实际上,我们所有的身体部位都被微生物殖民,暗示与我们的器官的串扰。由于分子工具和技术的发展(IE,宏基因组,代谢组,脂肪组,元复杂),宿主与不同微生物之间发生的复杂相互作用正在逐渐被解密。如今,肠道菌群偏差与许多疾病有关,包括肥胖,2型糖尿病,肝脂肪变性,肠道肠道疾病(IBD)和几种类型的癌症。 因此,提示与免疫,能量,脂质和葡萄糖代谢有关的各种途径受到影响。 在这篇综述中,给出了特定的注意,以对该领域的当前理解进行批判性评估。 许多分子机制解释了如何将肠道细菌与保护或疾病发作有因果关系。 我们检查了完善的代谢物(即,短链脂肪酸,胆汁酸,三甲基N-氧化物),并将其扩展到最近确定的分子参与者(即,IE,内源性大麻素,内源性脂质,生物活性脂质,生物活性脂质,酚类化合物和他们的高级聚糖端产物和肠性受体)) Alpha(PPARα)和Gamma(PPARγ),芳烃受体(AHR)和G蛋白偶联受体(IE,GPR41,GPR43,GPR43,GPR119,Takeda G蛋白偶联受体5)。如今,肠道菌群偏差与许多疾病有关,包括肥胖,2型糖尿病,肝脂肪变性,肠道肠道疾病(IBD)和几种类型的癌症。因此,提示与免疫,能量,脂质和葡萄糖代谢有关的各种途径受到影响。在这篇综述中,给出了特定的注意,以对该领域的当前理解进行批判性评估。许多分子机制解释了如何将肠道细菌与保护或疾病发作有因果关系。我们检查了完善的代谢物(即,短链脂肪酸,胆汁酸,三甲基N-氧化物),并将其扩展到最近确定的分子参与者(即,IE,内源性大麻素,内源性脂质,生物活性脂质,生物活性脂质,酚类化合物和他们的高级聚糖端产物和肠性受体)) Alpha(PPARα)和Gamma(PPARγ),芳烃受体(AHR)和G蛋白偶联受体(IE,GPR41,GPR43,GPR43,GPR119,Takeda G蛋白偶联受体5)。完全了解将肠道微生物与健康联系起来的复杂性和分子方面将有助于为已经开发的新型疗法树立基础。
摘要肠道菌群现在被认为是促进宿主健康调节的关键要素之一。实际上,我们所有的身体部位都被微生物殖民,暗示与我们的器官的串扰。由于分子工具和技术的发展(IE,宏基因组,代谢组,脂肪组,元复杂),宿主与不同微生物之间发生的复杂相互作用正在逐渐被解密。如今,肠道菌群偏差与许多疾病有关,包括肥胖,2型糖尿病,肝脂肪变性,肠道肠道疾病(IBD)和几种类型的癌症。 因此,提示与免疫,能量,脂质和葡萄糖代谢有关的各种途径受到影响。 在这篇综述中,给出了特定的注意,以对该领域的当前理解进行批判性评估。 许多分子机制解释了如何将肠道细菌与保护或疾病发作有因果关系。 我们检查了完善的代谢物(即,短链脂肪酸,胆汁酸,三甲基N-氧化物),并将其扩展到最近确定的分子参与者(即,IE,内源性大麻素,内源性脂质,生物活性脂质,生物活性脂质,酚类化合物和他们的高级聚糖端产物和肠性受体)) Alpha(PPARα)和Gamma(PPARγ),芳烃受体(AHR)和G蛋白偶联受体(IE,GPR41,GPR43,GPR43,GPR119,Takeda G蛋白偶联受体5)。如今,肠道菌群偏差与许多疾病有关,包括肥胖,2型糖尿病,肝脂肪变性,肠道肠道疾病(IBD)和几种类型的癌症。因此,提示与免疫,能量,脂质和葡萄糖代谢有关的各种途径受到影响。在这篇综述中,给出了特定的注意,以对该领域的当前理解进行批判性评估。许多分子机制解释了如何将肠道细菌与保护或疾病发作有因果关系。我们检查了完善的代谢物(即,短链脂肪酸,胆汁酸,三甲基N-氧化物),并将其扩展到最近确定的分子参与者(即,IE,内源性大麻素,内源性脂质,生物活性脂质,生物活性脂质,酚类化合物和他们的高级聚糖端产物和肠性受体)) Alpha(PPARα)和Gamma(PPARγ),芳烃受体(AHR)和G蛋白偶联受体(IE,GPR41,GPR43,GPR43,GPR119,Takeda G蛋白偶联受体5)。完全了解将肠道微生物与健康联系起来的复杂性和分子方面将有助于为已经开发的新型疗法树立基础。
在肿瘤研究领域的引言中,威廉·库利(William Cooley)是第一个证明微生物产物(特异性化脓性链球菌和铜质马斯科斯链球菌)抗肿瘤作用的人。1肠道微生物群代表一个由各种共生微生物组成的生态系统,这些微生物代谢了残留食物,肠道分泌物和消化汁和脱落结肠细胞。在大肠中,蛋白水解发酵随着饮食蛋白的高摄入而增加,从而产生诸如酚类化合物,胺,氨,N-硝基化合物和吲哚的物质产生。这些化合物可以对上皮细胞的分化和增殖产生致癌作用。2,3微生物群还影响许多人类基因的表达。例如,树突状细胞和巨噬细胞中的双歧杆菌,乳酸菌和大肠杆菌的特异性菌株会影响粘蛋白基因的表达,Toll样受体(TLR)信号传导,以及caspase表达,从而调节免疫活性和凋亡。共生细菌与免疫细胞之间的相互作用在促炎基因,原始基因,抗炎基因和肿瘤抑制基因之间建立了平衡。3-5 an
Sesterpenoids的生物活性性吸引了许多相关科学社区的广泛兴趣。14 - 19我们关于Hedyosmum Orientale Merr的初步研究。et chun导致了三个瓜伊亚诺莱德的隔离,一个瓜伊亚型替代型二聚二聚体和一个eudesmane - 瓜伊安娜异二聚体倍半萜类化合物。20 - 22作为我们持续的效果的一部分,用于从H. Ori-entale中进一步识别,从药用植物中发现了来自药用植物的结构独特和生物学上有效的天然产物,即23 - 25三个三个三个三囊A-c(1-3)。化合物1 - 3通过掺入decahydro-4,7-钙济硫酸苯二硫酸盐的主要成分和连续的2-氧化液[4.5]脱烷,具有前所未有的螺旋碳骨架。生物合成,化合物1-3可以源自单甲苯二烯4,并共存的瓜伊安娜sesqui-terpenoid,hedyosumin a(5),通过分子间二二二二二苯甲酸酯A(5)。模仿生物合成建议并获取足够数量的样品进行进一步的生物学研究,26,27
