摘要 - 我们考虑了一个仓库,其中数十个移动机器人和人类采摘者共同努力收集和运送仓库中的物品。我们解决的基本问题(称为采摘订单问题)是这些工人代理必须如何协调其在仓库中的动作和行动,以最大程度地提高此任务的性能。使用启发式方法建立的行业方法需要大量的工程工作,以优化天生的仓库配置。相比之下,可以灵活地应用多代理增强学习(MARL)大小,布局,工人的数量/类型,项目补充频率)和不同类型的采摘订单范式(例如,商品对人和人的物品),因为代理商可以学习如何通过经验来最佳合作。我们开发了层次的MARL算法,在该算法中,经理代理商将目标分配给工人,经理和工人的政策是为了最大程度地提高全球目标(例如,选择率)。我们的层次结构算法在基线MARL算法上取得了显着提高,并且在多种仓库配置和不同的订单挑选范式中,多个已建立的行业启发式方法的总体选择率和整体选择率在多个已建立的行业启发式方面实现了显着提高。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2024年9月21日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2024.09.18.613514 doi:Biorxiv Preprint
本指导文件仅供评论之用。请在《联邦公报》上公布指导草案的日期之前,提交一套电子或书面意见。电子意见提交至 http://www.regulations.gov。书面意见提交至食品药品管理局卷宗管理人员(HFA-305),地址:5630 Fishers Lane, Rm. 1061, Rockville, MD 20852。所有意见都应在《联邦公报》上公布的可用性通知中列出卷宗编号。可从通信、推广和发展办公室(OCOD)获取本指导的更多副本,地址:10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002,或致电 1-800-835-4709 或 240-402-8010,或发送电子邮件至 ocod@fda.hhs.gov,或通过互联网访问 http://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances。如对本指南内容有疑问,请通过上述电话号码或电子邮件地址联系 OCOD。
人工智能和机器人领域的负责任研究与创新 (RRI):一种关系方法,用于实现思想和机器的后人类共情 20 世纪 80 年代末开始的对人类基因组计划的伦理、法律和社会影响 (ELSI) 的研究,到 2010 年左右成为美国联邦预算的一项。ELSI 研究成为美国和欧盟政府科技机构自我反思的一部分;负责任的研究与创新 (RRI) 的道德理想已成为一种专业规范。1 这个历史性的例子是跨学科可能性的愿景,它指导了以下提议,即在思想和机器计划中系统地整合技术和道德,并作为纽约大学对这些问题的持续承诺的一部分。2 人工智能和机器人研究与人类基因组计划非常相似,并且肯定会从类似的处理中受益。RRI 提供了一种事后应对新技术影响的趋势的替代方案:它关注社会影响“上游”的设计问题和实施前的初始条件。RRI 在实施阶段的“中游”中也非常有效。在信息科学和技术的情况下,上游和下游之间的距离相对较短,中游干预的价值变得更加明显。3 对初始条件的敏感性是所有复杂自适应系统的一个特征——在任何希望整合人类和非人类系统的系统研究中都必须考虑到这一事实。中游发展阶段的亚稳态中介和过渡结构往往呼应了对初始条件的系统敏感性:它们易受干扰,因此容易受到一定程度的调节和管理。中游调节增强了道德干预的有效性 中游 RRI 在跨学科计划(如“心智与机器”)的情况下也具有强大的潜在影响。中游调节的实验室民族志研究表明,将社会科学家和人文研究人员嵌入科学和工程实验室可以增强反思方法实践和协调,从而使上述学科领域受益。4 一个非常适合当代人工智能和机器人研究跨学科性质的哲学框架是本体结构现实主义 (OSR) 5 。过程哲学与复杂自适应系统的一致性为设计和自然系统的稳健跨标量集成提供了进一步的本体论基础。以新康德哲学及其与过程形而上学的亲缘关系为基础的 OSR 具有根本的关系基础,它提供了适应性的概念能力,以应对技术的快速发展及其社会影响。科学和工程中的仿生 6 范式在这个方向上取得了有趣的进展。在伦理信息理论、神经科学、社会网络理论、生态学、系统理论和气候模型的交叉点上,生态模拟范式即将出现;这可能成为“环境人工智能”和机器人技术新方法的沃土。半个世纪前,克拉克和库布里克在《2001:太空漫游》中设想了环境人工智能,即 HAL, 7 并在斯皮尔伯格的《少数派报告》中重新构想为一个完全沉浸式的安全和商业环境。在现实生活中,IBM 和其他公司继续开发人机协作系统,这可以被视为生态模拟范式的初稿。虽然仍处于推测阶段,但由本地化和分布式机器人组成的自主自学型人工智能可以在日托环境中像婴儿一样被抚养长大。人工智能代理和人类之间精心策划的互动可以共同创造一个自组织生物的世界,其生态相互依存构成了后人类同情的有机基础。总结:基于认知责任 8 和社群伦理的自我限制是后人类同情的先决条件,这种同情可以为人类、非人类和人工智能代理之间的未来互动奠定基础。在精心策划的环境中,对负责任的创新模型进行自我学习、自我限制系统的训练,为新形式的共同生成的知识生产打开了大门,这些知识生产能够认识并响应人类和非人类价值观的处境。