夜晚是通过银河系的,”扎卡姆斯卡(Zakamska)说,对天体物理学家的效能式的类星体风不好,就像纳迪亚·扎卡姆斯卡(Nadia Zakamska)一样风将物质越来越远,远离核的寒冷。2010年的12月晚上,她仍然是许多问题,以期待观察时间,以回答有关Mauna Wind的Gemini望远镜的性质的答案,从试图在夏威夷的Kea中脱颖而出。她的提议在演变过程中的意义是使用望远镜的新新星系开始,风开始如何长期以来整体的feld单位光谱仪长期以来,它如何持续到它如何与各种各样的数据收集到诸如恒星形成之类的过程,“所有新的方法) - 所有新的方法都可以在了解地球的进化中同时收集了一个非常重要的问题。“尤其是我们认为天文对象的这一部分限制了宇宙中大量星系的最大标准FBER光谱。”对比,在天体物理学家开始研究之前给予天体物理学家
背景。河外等离子体喷流是少数能够限制超高能宇宙射线的天体物理环境之一,但它们是否能够加速这些粒子尚不清楚。目的。在这项工作中,我们通过考虑喷流的整体横向结构,重新审视了超出局部均匀场近似的相对论磁化冲击下的粒子加速。方法。使用相对论电子离子等离子体喷流的大型二维粒子模拟,我们表明在与周围介质的界面处形成的终止冲击将粒子加速到限制极限。结果。喷流磁场的径向结构导致相对论速度剪切,从而激发下游介质中的冯·卡门涡街,该涡街尾随充满宇宙射线的过压气泡。粒子在每次穿过剪切流边界层时都会得到有效加速。结论。这些发现支持了河外等离子体喷流可能能够产生超高能宇宙射线的观点。这种极端粒子加速机制也可能适用于微类星体喷流。
天文对象,例如恒星,类星体,银河系是研究宇宙和星系的非常重要的关键。我们都知道恒星同样发出光线和星系。这些天文对象的光具有一种辐射,称为电磁辐射。当我们拆分电磁辐射时,我们会得到光谱。光谱被定义为七种颜色的光,光谱用于识别每个恒星的化学成分和温度。每个灯光指示特定的化学元件或分子。由于每个灯光中存在的化学元件量,每个灯射线的温度变化。我们将能够使用位于墨西哥的Sloan Digital Sky Survey(SDSS)望远镜来获得该温度。由于这些光谱特征包含有关天文对象的重要信息,这对于更好地分类对象非常有用。用于处理大量数据,数据挖掘是一种常见的技术。使用了多种监督的机器学习算法,例如幼稚的贝叶斯,随机森林,决策树,决策树和多层感知器,并将结果相互比较。随机森林具有巨大的优势,例如平均许多决策树,随机森林会减少过度拟合,并且不容易受到数据中噪声和异常值的影响。与其他现有算法相比,随机森林中的准确性百分比很高。关键字:恒星光谱,天文对象,机器学习,多层感知。1。简介
在过去的 20-30 年里,邓德拉姆已经失去了以下设施:保龄球馆、类星体中心、游戏机厅、2 个软体游乐中心、市场摊位空间、“旧”购物中心内的小型私人拥有/经营商店(孩子们可以在那里安全地独立购物,培养自信、独立和许多其他生活技能),甚至还有马厩(Sweetmount)。这个拟建的住宅区开发项目与许多其他项目一样,为少数负担得起的人提供了大量昂贵的住宿(当地买房出租公寓楼的入住率为 60%),没有休闲/便利设施空间,没有设施,居民或其他当地社区居民无处可去,没有设施或当地活动——只能搬到室内,在邓德拉姆镇中心这个庞然大物里花钱购物。购物真的是我们唯一能提供的便利/休闲活动吗? (引用:斯蒂洛根 (Stillorgan) 失去了保龄球馆、游戏室、斯诺克台球桌、游戏机、软体游乐中心——高密度公寓住宿也失去了这些设施,居民或游客也没有地方进行休闲/社交活动)我们的“城镇中心”和郊区现在只提供商店——那么休闲设施呢?游泳池(斯蒂洛根)、溜冰场(克拉姆林、菲布斯伯勒)、软体游乐中心、游乐场、“市场广场”空间、“城镇绿地”公园空间(如桑迪蒙特)、表演和活动空间?
ILIAS M. FERNINI 电子邮件:ifernini@sharjah.ac.ae _______________________________________________________________ 教育: 物理学博士(专业:天体物理学),1991 年 美国新墨西哥大学,阿尔伯克基(美国) 天体物理学硕士,1985 年 美国爱荷华州立大学,爱荷华州艾姆斯(美国)理学学士固体物理学博士学位,1982 年,阿尔及尔科技大学(阿尔及利亚)工作经历:2021 年 1 月 - 至今:沙迦大学教授 2016 年 2 月 - 至今:沙迦天文、空间科学和技术学院空间科学系主任 2016 年 2 月 - 2021 年 1 月:沙迦大学副教授 2002 年 3 月 - 2015 年 12 月:阿联酋大学副教授 1997 年 9 月 - 2002 年 3 月:阿联酋大学助理教授 1995 年 9 月 - 1997 年 8 月:数学讲师,Dona Ana 通讯学院,拉斯克鲁塞斯,新墨西哥州(美国) 1996 年 1 月 - 1997 年 7 月:数学/物理讲师,埃尔帕索通讯学院1994 年 8 月 - 1997 年 8 月:博士后,新墨西哥州立大学,拉斯克鲁塞斯,新墨西哥州(美国) 1992 年 4 月 - 1994 年 7 月:助理教授,卜利达大学,阿尔及利亚 1989 年 5 月 - 1989 年 8 月:VLA 暑期学生研究助理(国家射电天文台,新墨西哥州索科罗,美国) 1984 年 8 月 - 1986 年 12 月:助教,爱荷华州立大学,爱荷华州艾姆斯(美国) 奖项: 第四届研究奖,ICES 2023(2023 年 2 月 6 日至 8 日),沙特阿拉伯利雅得 2014 年世界排名前 1% 的期刊出版物优异奖(天体物理学期刊增刊系列)–阿拉伯联合酋长国大学,2015 年 12 月 最佳教职员工优异奖 –科学,阿拉伯联合酋长国大学,2006 年 6 月。最佳非资助研究,第六届 UAEU 研究会议,2005 年 4 月 24-26 日。研究兴趣:活动星系核 / 射电星系 / 类星体火星大气 / 陨石 / 月牙可见性问题立方体卫星技术伊斯兰科学史
使用绝对天体测量的国际天体参考框架 在 2023 年 2 月出版的《天文学杂志》 [1] 上发表的一篇新论文中,美国天文学家 David Gordon 领导的团队海军天文台报告首次在国际天文学联合会的官方天体参考框架中精确定位了我们银河系中心的黑洞。位于我们银河系中心的是一个超大质量黑洞,被称为人马座 A* (Sgr A*),这是一个强大的射电源,自 1950 年代初以来就为人所知和研究。银河平面中的气体和尘埃在光谱的可见部分遮蔽了它,但对其附近恒星运动的红外观测表明,它的质量约为 400 万个太阳质量 [2] 。最近,事件视界望远镜 [3] 拍摄到了它的影子。但尽管对它进行了许多研究,但要准确在天空中定位它却非常困难。准确定位人马座 A* 相对于天体参考系中其他源的位置,对于定义银河系坐标系和研究银河系结构、运动学和动力学,以及在无线电、毫米波和红外线下进行研究和图像之间的配准都非常重要。之前对其位置的最佳估计是使用一种称为“差分”天体测量的无线电干涉测量技术进行的,其中它的天体坐标是相对于一个或两个附近的校准器无线电源进行估计的。然而,所使用的校准源的坐标仅精确到几十毫角秒 (mas),并且可能会随时间略有变化,导致 Sgr A* 的坐标也存在类似的不确定性。但现在,一项由美国海军天文台天文学家领导的新研究发表在 2023 年 2 月的《天文学杂志》[1] 上,首次确定了 Sgr A* 的精确位置以及它在国际天文学联合会官方天体参考框架 ICRF3 [4] 中的自行。ICRF3 是国际天体参考框架的第三个实现,是一个由甚长基线干涉测量 (VLBI) 确定的 ~4500 个紧凑类星体射电源的精确坐标组成的天体参考框架。过去几年,美国海军天文台的 David Gordon 和同事南非射电天文台的 Aletha de Witt 以及喷气推进实验室的 Christopher Jacobs 一直在使用名为 VLBI“绝对”天体测量的射电干涉测量技术对人马座 A* 进行观测,该技术通过
Name: Dr. Ronald Gamble Code: 660 Home institution: NASA Goddard Space Flight Center/University of Maryland College Park Name of task: Cosmic Origins Role in task/ what they do for CRESST: As Cosmic Origins Research Scientist within the Cosmic Origins program, my role is to support the scientific initiatives and public-facing interactions of the office and the Cosmic Origins Program Analysis Group (COPAG).我的任务是支持未来的NASA任务进行科学发现,并向NASA天体物理学社区进行更新。作为宇宙探索者计划的主任,我领导了努力,这些努力参与并支持天文学和物理社区的早期职业成员的专业发展。背景/自传?我的学术旅程始于学士学位物理学和北卡罗来纳州农业技术州立大学的美术未成年人。我继续获得硕士学位在实验性高温超导性中和博士学位。在理论上的天体物理学中,关于“重力辐射:粘弹性kerrlambda时空中的非线性波理论”主题。在北卡罗来纳州农业技术州立大学时,我获得了HBGI博士学位奖学金,并完成了该机构的第一个相关论文。在NC A&T期间,我在物理,化学,生物医学和生物部门中创建了六个新课程。在NC A&T教授七年后,与研究生和博士后职位同时,我成为国防威胁降低机构核技术效果R&D部门的理论和数学物理学的博士后研究员。I然后加入了马里兰州大学的克雷斯特二世(Cresst II),即2021年8月,在NASA GSFC的研究科学家,后来是2022年春季的宇宙起源。成为一名CRESST科学家最喜欢的部分?成为一名CRESST科学家的绝对最喜欢的部分是最终在我梦dream以求的工作和职业中工作的机会。我还可以激发学生在支持他们的专业发展之外的同样的愿望。我每天都可以学习黑洞和类星体,同时在NASA内创造新的机会,以使学生更容易从事这一职业领域。这是科学的沟通,研究和计划开发。研究的亮点是克雷斯特科学家?我目前的研究重点是得出相对论喷射发射和粒子加速机制的数学和计算模型,
