[3] LIBOWITZ MR,WEI K,TRAN T,et al.Regional brain volumes relate to Alzheimer's disease cerebrospinal fluid biomarkers and neuropsychometry:A cross-sectional,observational study[J].PLoS One,2021,16(7):e0254332.[4] 王含春 , 汪群芳 , 罗长国 , 等 .磁共振薄层扫描结合人工智能脑结构分割技术分析海马体积辅 助诊断脑小血管病认知功能障碍 [J].全科医学临床与教育 ,2024,22(3):208-211.[5] 姜华 , 宛丰 , 吕衍文 , 等 .2 型糖尿病伴认知功能障碍患者基于体素的脑形态学 MRI 研究 [J].中 国 CT 和 MRI 杂志 ,2018,16(4):22-25.[6] 景赟杭 , 郭瑞 , 常轲 , 等 .2 型糖尿病性认知功能障碍脑结构 MRI 成像研究进展 [J].延安大学学 报(医学科学版) ,2024,22(1):88-91,107.[7] 郭浩 , 和荣丽 .磁共振成像对老年性痴呆患者海马解剖结构的评估价值研究 [J].磁共振成 像 ,2022,13(8):75-79.[8] 罗财妹 , 李梦春 , 秦若梦 , 等 .阿尔茨海默病谱系患者的海马亚区体积损害特征 [J].中风与神经 疾病杂志 ,2019,36(12):1097-1101.[9] 冯伦伦 , 金蓉 , 曹城浩 , 等 .阿尔茨海默病患者认知功能减退的海马亚区结构改变分析 [J].临床 放射学杂志 ,2022,41(10):1819-1824.[10] WEI Y,HUANG N,LIU Y,et al.Hippocampal and Amygdalar Morpho logical Abnormalities in Alzheimer,s Disease Based on Three Chinese MRI Datasets[J].Curr Alzheimer Res,2020,17:1221-1231 . [11] ESTEVEZ S S,JIMENEZ H A,ADNI G.Comparative analy sis of methods of volume adjustment in hippocampal volumetry for the diagnosis of Alzheimer disease[J].Neuroradiol,2020;47(2):161-5.[12] 曾利川 , 王林 , 廖华强 , 等 .结构与功能磁共振成像在轻度认知障碍及阿尔茨海默病中的应 用 [J].中国老年学杂志 ,2021,41(13):2902-2907.[13] KODAM P,SAI S R,PRADHAN S S,et al.Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets[J].Sci Rep,2023,13(1):3695.[14] 黄建 , 王志 .复杂网络分析技术在阿尔兹海默症患者脑结构和功能影像中的应用进展 [J].中 国医学物理学杂志 ,2024,41(8):1053-1055.[15] JELLINGER K A.The pathobiological basis of depression in Parkinson disease:challenges and outlooks[J].J Neural Transm(Vienna),2022,129(12):1397-1418.[16] BANWINKLER M,THEIS H,PRANGE S,et al.Imaging the limbic system in Parkinson's disease-A review of limbic pathology and clinical symptoms[J].Brain Sci,2022,12(9):1248.[17] 程秀 , 张鹏飞 , 王俊 , 等 .小脑结构与功能磁共振成像在帕金森病中的研究进展 [J].磁共振成 像 ,2022,13(4):146-149.[18] CUI X,LI L,YU L,et al.Gray Matter Atrophy in Parkinson's Disease and the Parkinsonian Variant of Multiple System Atrophy:A Combined ROI-and Voxel-Based Morphometric Study[J].Clinics(Sao Paulo),2020,75:e1505.[19] LOPEZ A M,TRUJILLO P,HERNANDEZ A B,et al.Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor[J].Mov Disord,2020,35(7):1181-1188.[20] 鲍奕清 , 王二磊 , 邹楠 , 等 .帕金森病伴疲劳患者的大脑功能与结构磁共振成像研究 [J].临床 放射学杂志 ,2024,43(8):1265-1270.[21] 邹楠 , 王二磊 , 张金茹 , 等 .帕金森病伴疼痛患者大脑皮层厚度改变的结构 MRI 研究 [J].磁共 振成像 ,2024,15(5):13-18,23.[22] 屈明睿 , 高冰冰 , 苗延巍 .帕金森病伴抑郁在脑边缘系统结构及功能改变的 MRI 研究进展 [J].磁共振成像 ,2023,14(12): 127-131.
然而,这类实验也有天然的局限性:一方面,人类脑器官在啮齿动物中的扩增受到可用解剖空间和动物相对较短的寿命的限制。为了延长成熟期,理论上可以将脑器官移植到大型长寿生物的大脑中,例如家猪或灵长类动物。此外,也可以在发育的早期阶段将脑器官移植到受体动物体内,这将使人类细胞更好地整合到动物大脑的功能回路中。然而,目前尚不清楚这类实验是否确实能够更好地形成结构和功能单元,以及可以达到何种程度的细胞和回路的复杂性和成熟度。
摘要我们当前关于人脑发展的知识主要源自关于非人类灵长类动物,绵羊和啮齿动物的实验研究。但是,由于物种差异和产后和产后脑成熟的变化,这些研究可能无法完全模拟人脑发育的所有特征。因此,补充体内动物模型以增加临床前研究与潜在的未来人类试验具有适当相关性的可能性是重要的。三维脑器官培养技术可以补充体内动物研究,以增强临床前动物研究的转换性和对脑相关疾病的理解。在这篇综述中,我们着重于使用人脑器官的低氧缺血(HI)脑损伤模型的发展,以补充从动物实验到人类病理生理学的翻译。我们还讨论了这些工具的开发如何提供潜在的机会来研究与HI相关脑损伤的病理生理学的基本方面,包括男性和女性之间的反应差异。
摘要:称为Sentiomics的新科学旨在确定具有感受和意识的能力的动态模式。在延性学中,最有前途的调查领域之一是人类脑器官的发展和“教育”,对促进(也是新的)再生神经医学领域的促进人类健康有效。在这里,我们讨论了在实验环境中制造脑器官含量所需的信息丰富的输入的类型。将这项研究与亚马逊雨林中保存感性的生态关注相结合,我们还设想开发新一代的生物传感器,以从森林中捕获动态模式,并将它们用于大脑器官的“教育”中,以使他们在未来的医学中可能具有“心理健康”质量,从而在“居民”中具有重要的医学。这项研究与人类心理健康疗法的心理物理学方法密切相关,在该方法中,我们提出了在电力和磁性脑刺激方案中使用动态模式的方法,以解决神经震荡网络中的电化学波。
人工智能的不断发展对生物医学等领域产生了深远的影响,提供了新的研究思路和技术方法。类脑计算是多模态技术与生物医学领域的重要交叉点。本文聚焦人机交互中脑信号解码文本和语音的应用场景,全面回顾了基于深度学习的类脑计算模型,追踪了其演进、应用价值、挑战和潜在的研究趋势。首先回顾了其基本概念和发展历史,将其演进分为近代机器学习和当代深度学习两个阶段,强调了每个阶段在人机交互类脑计算研究中的重要性。此外,从数据集、不同脑信号等五个角度回顾了深度学习在人机交互类脑计算不同任务中的最新进展,并详细阐述了模型中关键技术的应用。尽管类脑计算模型取得了重大进展,但充分发挥其能力仍面临挑战,并为未来的学术研究提供了可能的方向。欲了解更详细信息,请访问我们的 GitHub 页面:https://github.com/ultracoolHub/brain-inspired-computing。
∗ 基金项目 : 国家自然科学基金 (61072135,81971702), 中央高校基本科研业务费专项 (2042017gf0075,2042019gf00720), 湖北
会议报道:从科幻到现实,脑机接口如何连接 AI 与人类智慧? “《黑客帝国》在某种意义上描绘了脑机接口的终极目标:向大脑输入一个完整 的虚拟外部环境并与之双向交互。”上海科技大学生物医学工程学院常任轨助理 教授、计算认知与转化神经科学实验室主任李远宁说道。 近日,由天桥脑科学研究院(中国)主办的“从科幻到现实——人类智能如何与 人工智能融合?”主题活动在上海图书馆东馆举行。 活动上,李远宁与知名科幻作家,银河奖、全球华语星云奖金奖得主江波展开了 跨越科幻与科学的对谈,将脑机接口( Brain Computer Interface , BCI )这项从小 说走向现实、不断引爆学界和产业界热点的技术进行了生动演绎,探索脑机接口 与 AI 融合的无限可能,并客观阐释了从令人遐想的突破性个例到广泛应用的距 离。 脑科学是人类所知甚少的“自然科学最后一块疆域”,也是科幻作品经久不衰的 灵感来源。今年以来,天桥脑科学研究院(中国)发力 AI for Brain Science ,鼓励 AI 和脑科学这两个“黑匣子”互相启发、互相破译。 一方面,研究院已组织了六场 AI for Brain Science 学术会议,促进 AI 科学家、神 经科学家、临床医生、产业界专家和高校年轻学生学者同台共话,分享 AI for Brain Science 相关基础研究和健康应用,系列会议大众总观看 52 万人次,参会领域专 家 800 余人;另一方面,研究院也积极组织“ AI 问脑”系列科普会议,邀请 AI 科 学家、脑科学家展开跨界对谈,激发公众对 AI for Brain Science 的兴趣和探索。 点击此处阅读原文
同时,它将卷积神经网络与传统方法相结合,以基于短时傅立叶变换和连续小波变形的特征提取方法提出特征提取方法。卷积神经网络分类算法使用特征提取算法来提取时间频率特征来制作时间频率图,并使用卷积网络来快速学习分类的功能。测试结果表明,该算法在运动图像脑电图公共数据集中的精度为96%,而自制数据集的精度率约为92%,这证明了算法在运动成像EEG分类中的可行性。
摘要 源自人类多能干细胞的脑类器官这一新兴技术为研究人脑发育及相关疾病提供了前所未有的机会。人们已开发出各种脑类器官方案,这些方案可以重现发育中人脑的细胞类型多样性、细胞结构组织、发育过程、功能和病理的一些关键特征。在这篇综述中,我们重点介绍人类干细胞衍生的脑类器官的模式化。我们首先概述了生成脑类器官的一般程序。然后,我们重点介绍了一些最近开发的脑类器官方案和化学线索,这些方案和线索涉及模拟特定人脑区域、亚区域和多个区域共同发育。我们还讨论了人脑类器官技术的局限性和未来潜在的改进。