摘要 — 众所周知,考虑用户特定设置可以增强脑机接口 (BCI) 的性能。特别是,振荡活动分类的最佳频带高度依赖于用户,过去二十年已经开发了许多频带选择方法。然而,这些传统方法是否可以有效地应用于黎曼 BCI 尚未得到很好的研究,黎曼 BCI 是一类新兴的 BCI 系统,与传统 BCI 管道不同,它利用了数据的非欧几里得性质。在本文中,我们提出了一种基于黎曼流形的新型频带选择方法。选择频带时,考虑到基于流形上的类间距离和类内方差量化的类独特性。该方法的一个优点是可以针对每个人调整频带,而无需进行密集的优化步骤。在使用基于运动想象的 BCI 公共数据集的比较实验中,我们的方法比固定宽频带和流行的传统频带选择方法的平均准确率有显著提高。尤其是,我们的方法显著提高了最初准确度较低的受试者的表现。这一初步结果表明,开发考虑流形属性的新用户特定设置算法的重要性,而不是直接应用在黎曼 BCI 兴起之前开发的方法。
协方差矩阵学习方法因其在非线性数据中捕获有趣的结构的能力而在许多分类任务中变得流行,同时尊重基础对称的对称阳性(SPD)歧管的riemannian几何形状。最近通过学习基于欧几里得的嵌入方式,在分类任务中提出了几种与这些矩阵学习方法相关的深度学习体系结构。在本文中,我们提出了一个新的基于Riemannian的深度学习网络,以为脑电图(EEG)分类生成更具歧视性的特征。我们的关键创新在于学习Riemannian地理空间中每个班级的Riemannian Barycenter。提出的模型将SPD矩阵的分布归一化,并学习每个类的中心,以惩罚矩阵与相应类中心之间的距离。作为一种要求,我们的框架可以进一步减少阶层内距离,扩大学习特征的类间距离,并始终在三个广泛使用的EEG数据集中超过其他最先进的方法,以及来自我们在虚拟现实中的压力诱导的实验中的数据。实验结果证明了由于协方差描述符的鲁棒性以及考虑到riemannian几何形状上的Barycenters的良好有益的核心信号的非平稳性框架的优越性。
摘要 — 自闭症谱系障碍 (ASD) 是一种神经发育综合征,患者的社交互动、沟通技巧和情感表达能力下降。自闭症综合征可以通过脑电图 (EEG) 检测出来。本研究利用自闭症患者的脑电图来支持机器学习方案的分类研究,以获得最佳准确度。对脑电信号进行分类的最佳方法之一是线性判别分析 (LDA),这是一种对自闭症和正常脑电信号进行分类的机器学习技术。之所以选择 LDA,是因为它可以通过利用类间和类内函数来最大化类间距离并最小化散射数量。该方法与其他方法相结合:独立成分分析 (ICA) 和离散小波变换 (DWT),以提高准确度系统。ICA 可以去除脑信号以外的伪影或信号,这些伪影或信号可能会导致脑电信号中的噪声,因此分析的信号是完整的脑电信号,没有其他因素。DWT 可以帮助增加脑电信号中的噪声抑制,并通过频率和时间表示提供信号信息。脑电图数据集来自 16 名儿童(8 名自闭症儿童和 8 名正常儿童)。数据集中的信号使用 ICA 过滤伪影,通过 DWT 分解成三个级别,并使用线性判别分析 (LDA) 技术进行分类。使用混淆矩阵,结果显示最佳准确率为 99%。
