摘要:本文讨论了不同形式的粉末床熔合 (PBF) 技术,即激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EB-PBF) 和大面积脉冲激光粉末床熔合 (L-APBF)。多金属增材制造面临的挑战,包括材料兼容性、孔隙率、裂纹、合金元素损失和氧化物夹杂物,已得到广泛讨论。为克服这些挑战提出的解决方案包括优化打印参数、使用支撑结构和后处理技术。未来需要对金属复合材料、功能梯度材料、多合金结构和具有定制性能的材料进行研究,以应对这些挑战并提高最终产品的质量和可靠性。多金属增材制造的进步可以为各个行业带来巨大的利益。
爆炸的粉末定向能量沉积经过精心设计,用于精细分辨率添加剂制造处理。同轴粉末沉积头使用由外喷嘴指向的屏蔽气体的外层,以防止在粉末熔化过程中发生氧化。粉末爆炸的原料集水效率可能低至50-80%,而电线沉积系统的效率更接近98%。本研究评估了定向能量沉积喷嘴条件对集水效率的影响。通过粉末流的收敛性,已经发现总体外部屏蔽气喷嘴长度的变化可将材料使用效率提高10%。该实验的结果表明,对于同轴粉末沉积头设计,如果可以安全地降低僵持距离,则随着外部屏蔽气喷嘴的长度增加或隔离距离降低,可以提高粉末流域效率。
查尔姆斯理工大学摘要:尽管激光粉末床熔合 (LB-PBF) 作为一种增材制造技术具有突出地位,但获准用于该工艺的合金数量仍然有限。在传统制造中,铁合金是最常见的合金组,主要由普通碳钢和低合金钢组成。然而,在 LB-PBF 中,铁合金的生产仅限于少数奥氏体/沉淀硬化不锈钢和工具钢。普通碳钢和低合金钢的缺乏源于碳在加工过程中的负面影响,这会促进成品材料内开裂缺陷的形成。因此,为了扩大 LB-PBF 的机会,必须了解如何加工这些含碳铁合金。本研究探讨了各种普通碳钢(0.06 至 1.1 wt.% C)和低合金钢(4130、4140、4340 和 8620)的 LB-PBF 加工性能和微观结构。微观结构分析发现,成品试样由回火马氏体组成,这种回火马氏体是由于 LB-PBF 过程中的初始快速冷却和随后的固有热处理而形成的。此外,在 C 含量≥0.75 wt.% 的合金中观察到残余奥氏体的存在,这是由于马氏体转变温度降低,导致冷却至室温时部分奥氏体未转变。就缺陷而言,成品试样内的孔隙率可能与所选的体积能量密度 (VED) 和合金的碳含量有关。在低 VED 下,试样含有与未熔合孔隙有关的大而不规则的孔隙,而在高 VED 下,试样含有与小孔隙有关的圆形中等大小的孔隙。就碳含量而言,发现增加碳量可减少低 VED 下的未熔合孔隙的数量,而增加高 VED 下的小孔隙的数量。未熔合孔隙的减少是由于熔池的润湿性和流动性改善,而小孔隙的增加是由于碳含量较高导致熔池深度增加。除了孔隙之外,在一些普通碳钢和低合金钢中还观察到冷裂纹,形成于硬度超过某些阈值的试样中:Fe-C 合金为 ≥425 HV,4140 合金为 >460 HV,4340 合金为 >500 HV。增加 VED 或激光功率会降低样品硬度,因为这两个因素都会增强 LB-PBF 的固有热处理。这意味着如果使用足够大的 VED 或激光功率,就可以避免(某些合金中的)开裂。碳含量还会影响成品样品的硬度,从而影响开裂敏感性,这一发现解释了为什么低碳合金(<0.43 wt.% C)在任何测试的 VED 下都不会出现开裂,而高碳合金(≥0.75 wt.% C)会在任何测试的 VED 下出现开裂。% C) 在每次测试的 VED 中都出现开裂。利用这些发现,建立了加工窗口,无需预热构建板即可生产出高密度 (>99.8%)、无缺陷的普通碳钢和低合金钢样品。
摘要 多种增材制造方法已经成熟,并已在多个行业投入常规生产。对于金属加工,通常使用线材或粉末作为原料。线材加工通常用于相对较大的结构构建,而粉末加工通常提供更精确的金属应用。对于粉末床熔合工艺,使用非常细的粉末(通常为 20 µm 至 65 µm),而对于定向能量沉积,粉末的范围在 50 µm 至 160 µm 之间。这种细粉末可能对人类健康构成风险(吸入、皮肤整合)。避免在生产环境中接触粉末可能是一项艰巨的任务,甚至无法避免。因此,开发了一种替代工艺,该工艺不是以自由粉末颗粒的形式提供粉末,而是以粉末片的形式提供粉末。为了实现颗粒之间必要的粘合,使用粘合剂。为了了解粘合剂在激光加工粉末片过程中的影响,产生了单脉冲和线处理并用高速成像记录下来。记录显示了粘合剂的蒸发和相关的粉末颗粒的喷出。在较低的能量输入下,粘合剂蒸发导致较少的飞溅,这表明在低加热速率下加热粘合剂会对粉末颗粒产生较小的压力。
光聚合物衍生的碳的越来越流行,但可用特征尺寸的范围有限。这里的重点是扩展轨道到低表面与体积比(SVR)结构。描述了具有FTIR和DSC的高温丙烯酸光聚合前体的前体,并开发了用于在MM量表中以1.38×10 - 3μm-1的SVR生产构建的碳的热惰性总和处理。基于热重分析和质谱法,两种激活能量为≈79和169 kJ mol -1的热度制度被撤消,这在聚合物的形态转换过程中的机制是理论的,在300°和500°C之间的形态转换过程中。元素组成(440–600°C,O/C 0.25–0.087%)。洞察力导致对初始坡道(2°C min -1至350°C),等温固定(14 h),后保持坡道(0.5°C min -1-1至440°C)和最终坡道(10°C min -1至1至1000°C)进行优化的热处理。所得的碳结构在尺寸上是稳定的,无孔在μm的比例下,并包含特征大小的前所未有的变化(从mm到μm,比例)。发现应将构造碳推向工业相关的量表。
为英国和爱尔兰共和国开处方信息(PI),请在处方前请参阅产品特征摘要(SMPC)。Composition: Each vial contains respectively, nominally 250 IU, 500 IU, 750 IU, 1000 IU, 1500 IU, 2000 IU, 3000 IU and 4000 IU efmoroctocog alfa and approximately 83 IU/mL, 167 IU/mL, 250 IU/mL, 333 IU/mL, 500 IU/mL, 667重组后,IU/ML,1000 IU/ML和1333 IU/ML重组efmoroctocog Alfa。还含有每瓶0.6 mmol(或14 mg)的钠。指示:血友病患者(先天性因子VIII缺乏)患者的出血治疗和预防。elocta®可用于所有年龄段。剂量和给药:静脉用途。应在治疗血友病的医生的监督下开始治疗。重组因子VIII FC活性的一个IU等效于1毫升正常人血浆中的VIII量。elocta®应在几分钟内静脉注射。给药率应取决于患者的舒适度,不应超过10 ml/min的替代疗法的剂量和持续时间取决于VIII因子缺乏因素的严重程度,基于出血的位置和范围以及患者的临床状况。剂量指南:按需:重组因子VIII FC所需剂量的计算基于经验发现,即每公斤体重1 IU因子VIII VIII VIII VIII会使血浆VIII VIII活性提高2 IU/DL。用于治疗出血发作和手术时的Elocta®剂量,请参阅SMPC第4.2节。使用以下公式确定所需剂量:所需单位=体重(kg)×所需因子VIII上升(%)(IU/DL)×0.5(IU/kg per IU/dl)。要施用的金额和给药频率应始终定向在单个情况下的临床有效性。预防:对于长期预防,建议的剂量为每公斤体重VIII的50 IU,每公斤体重为3至5天。可以根据患者反应在25至65 IU/kg的范围内调整剂量(请咨询SMPC第5.1和5.2节)。在某些情况下,尤其是在年轻患者中,可能需要较短的剂量间隔或更高剂量。老年人:≥65岁的患者经验有限。小儿种群:对于12岁以下的儿童,可能需要更频繁或更高剂量。对于青少年(≥12岁),剂量建议与成人相同。有关重建的说明,请参阅SMPC第6.6节。禁忌症:对活性物质或任何赋形剂的过敏性。使用的特殊警告和预防措施:超敏反应:Elocta®可能会产生过敏性高敏反应。应告知患者过敏反应的迹象,并建议立即停止使用药物并与医生联系。在发生冲击的情况下,应实施标准的冲击医疗治疗。抑制剂:对因子VIII的中和抗体(抑制剂)的形成是嗜血杆菌患者管理的已知并发症。应通过适当的临床观察和实验室测试来仔细监测接受凝血因子VIII产品的患者的抑制剂。如果未达到预期因子VIII活性等离子体水平,或者不使用适当的剂量控制出血,则应对VIII抑制剂的存在进行测试。在抑制剂较高的患者中,VIII因子疗法可能不有效,应考虑其他治疗选择。心血管事件:在现有心血管危险因素的患者中,用VIII因子取代治疗可能会增加心血管风险。与导管相关的并发症:如果需要使用中央静脉通路装置(CVAD),则应考虑与CVAD相关并发症的风险,包括局部感染,菌血症和导管部位血栓形成。可追溯性:为了提高生物药产品的可追溯性,应清楚记录管理产品的名称和批次数。儿科人口:列出的警告和预防措施适用于成年人,儿童和青少年。赋形剂相关的考虑因素:Elocta®每个小瓶的含量少于1 mmol钠(23 mg),即基本上是“无钠”。相互作用:尚未报道人类凝血因子VIII(rDNA)与其他药物的相互作用。尚未进行相互作用研究。生育能力,怀孕和泌乳:基于女性血友病A的罕见发生,在怀孕和哺乳期间使用VIII的使用经验是不可用的。因此,仅在明确指示时,应在怀孕和母乳喂养期间使用VIII因子。不希望的效果:请咨询SMPC第4.8节,以获取不良效果的完整列表。Hypersensitivity or allergic reactions (which may include angioedema, burning and stinging at the infusion site, chills, flushing, generalised urticaria, headache, hives, hypotension, lethargy, nausea, restlessness, tachycardia, tightness of the chest, tingling, vomiting, wheezing) have been observed rarely and may in some cases progress to severe anaphylaxis (包括震惊)。中和抗体的开发(抑制剂)可能发生在接受VIII因子治疗的患者中,包括Elocta®。如果发生这种抑制剂,则该疾病将表现为临床反应不足。在这种情况下,建议联系专门的血友病中心。临床试验中报告的不良反应包括以下内容:
图 3:A) 基于单珠 (SB) 实验的每种激光功率和激光速度组合的熔化行为与预测的熔化行为叠加。B) 连续单珠的宽度和标准偏差与预测的熔化行为叠加。对于这两个图,预计绿色区域将完全熔化,黄色区域将部分熔化,蓝色区域将不熔化。
摘要以其几何自由度和准确性而闻名的激光粉床融合(LPBF)以及以高堆积速率而闻名的基于喷嘴的激光金属沉积工艺(LMD)的组合具有减少大型金属零件的添加性制造时间的巨大潜力。对于LPBF-LMD混合过程链的工业应用,有必要研究LMD过程对LPBF底物的影响。此外,构建板材还对沿添加剂制造工艺链的失真发生有很大的影响。在文献中,钢制构建板经常用于Inconel 718的基于激光的添加剂制造过程中,因为可以确保良好的冶金结合,同时降低制造板的生产和恢复成本。本文研究了由LMD材料沉积引起的变形以及沿混合添加剂制造工艺链的构建板材料的影响。双悬臂是由LPBF制造的,随后将一层放置在LMD中。失真均在井期和热处理后的状态下测量。确定不同LMD孵化策略对失真的影响。实验是使用镍基合金inconel 718进行的。结果显示了LMD路径策略对失真的显着影响,较短的工具路径会导致失真较少。热处理后的剩余失真在很大程度上取决于构建板的材料。
虽然PXRD是获得有关材料的固态结构的最简单,最快的方法,但单晶X射线差异(SC-XRD)仍然是有关分子构成和周期性排列的综合数据的金标准。从粉末数据(SDPD)中确定结构也是晶体结构确定的一种活跃而实践的方法。然而,高质量的粉末X射线差异数据和对专家晶体学家的访问可能是要求,而使用的方法比SC-XRD涉及更多的时间,约束和试验和错误,然后才能获得分子有机晶体的成功。2 - 4统计评估是否可以通过Rietveld