粉末流速是定向能量沉积 (DED) 工艺中的一个关键参数。在典型的构建过程中,如果粉末流速仅降低 1 秒,就会影响 30 毫米的熔体轨迹。因此,即使粉末流速发生微小变化也会对构建质量产生重大影响。在这项工作中,使用离线重量测量、流动成像、现场构建数据和同轴熔池成像等多种方法量化了不同类型 316 L 钢粉末的粉末流稳定性。观察到流速振荡,与粉末料斗转盘旋转的周期性相关,其幅度足以对构建质量造成影响并可在同轴熔池成像中识别。讨论了流速变化对使用熔池成像进行闭环控制的影响。
摘要该研究的目的是了解Awassi Lambs饮食中Sumac粉末的生物学作用。总共使用了24个AWASSI羔羊(3-4个月)(16.5±1.5g男性和20±2.5 g女性),分为四组(6只动物 / 3个复制)。在情况下(2.5*1.5 cm),实验动物分别喂入四个。第1组在饮食中喂食而不增加0%(对照);组2、3和4被喂食1、3和5%sumac粉末。结果表明,在AST和ALT中的两组之间的饲料显着差异中添加Sumac粉末。与对照组相比,两组之间在肌酐,尿素,总蛋白,白蛋白和球蛋白水平中没有显着意义。我们的结果表明,sumac可以用于动物食品中,而不会对其健康产生任何影响。。
这些产品是专门为需要全天候可靠无人值守运行的工业重型应用而开发的。所有组件均符合在嘈杂、潮湿、污垢、振动、温度和易受冲击的环境中可靠运行的严格要求。结合坚固紧凑的设计,所有组件均适用于恶劣环境下的严苛操作条件。成功使用这些新产品的其他行业包括航空航天、汽车和国防工业。作者在自己的工作中使用了一些产品,其中包括设计用于在微重力下合成纳米粉末的机载 CO 2 激光反应器的第一个原型,该实验参加了 1989 年 10 月 20 日至 30 日在法国波尔多-梅里尼亚克举行的第 25 届 ESA 抛物线飞行活动 (1)。
近年来,金属增材制造技术发展迅猛,已成为工业生产高度复杂、功能集成部件的重要技术。然而,几乎所有增材制造的部件都必须进行后处理,以满足几何公差、表面质量要求和所需的功能特性。因此,增材制造实际上意味着增材-减材工艺链的实施。从最相关的增材工艺(基于粉末的 PBF-LB、LMD-p 和基于线材的 WAAM 和 LMD-w/WLAM)开始,考虑中间工艺步骤(热处理和喷丸),最后是后处理材料去除工艺(具有定义和未定义的切削刃),本文概述了最近的研究成果,全面科学研究了增材-减材工艺链中的影响和相互作用。这包括宏观几何尺度和材料结构的微观尺度。最后,得出结论并讨论了未来的观点。
摘要:本文回顾了纳米颗粒技术在铝基合金增材制造 (AM) 方面的现状。对常见的 AM 工艺进行了概述。增材制造是制造业进步的一个有前途的领域,因为它能够生产出近净成型的部件,并且在最终使用之前只需进行最少的后处理。AM 还允许制造原型以及经济的小批量生产。通过 AM 加工的铝合金由于其高强度重量比,将对制造业非常有益;然而,许多传统的合金成分已被证明与 AM 加工方法不兼容。因此,许多研究都着眼于改善这些合金的加工性的方法。本文探讨了使用纳米结构来增强铝合金的加工性。结论是,添加纳米结构是改进现有合金的一种有前途的途径,并且可能对其他基于粉末的工艺有益。
尽管旋转在全球范围内继续吸引越来越多的兴趣,但这种非凡且非常多功能的聚合物加工方法仍然保持其固有的特殊性和特征,例如长期漫长的周期,可旋转的材料的选择非常有限,并且效率高的热量交换。今天的腐烂仍在面临与许多年前相同的问题 - 针孔,空隙,呼吸系统堵塞,基本设计错误等。似乎没有通过引入革命性和先进技术来帮助解决这些特定问题的革命性和先进技术来处理树脂(例如聚乙烯,聚丙烯,聚酰胺等)的灵活方法。例如,对于许多腐蚀剂而言,完全从旋转物品的表面完全根除针孔可能非常困难。与其他塑料过程相比,周期时间将非常长。旋转过程不是一个有效的过程,因为从燃烧器到空气,到工具再到粉末的热量交换中缺乏热效率。
本研究提出了一种对激光粉末融合的原位监测方法。使用标准的激光光学元件,在瞄准前扫描配置中获得了粉末床的同轴高分辨率多光谱图像。可以生成整个114×114 mm粉末床的连续概述图像,检测到直径低至20 µm的物体,最大偏移量为22-49 µm。通过从405 nm到850 nm的6个不同波长捕获图像来获得多光谱信息。与已建立方法的吸光度光谱相比,这允许在线确定粉末床的吸光度,最大偏差为2.5%。对于此方法的资格,已经在粉末表面和20种不同粉末的测试上进行射线追踪模拟。这些包括不同的颗粒大小,年龄和氧化粉末。
已发布版本的引文 (APA):Gajjar, P., Styliari, I. D., Burnett, T., Chen, X., Elliot, J.A., Ganley, W. J., Hammond, R., Nguyen, H., Price, R., Roberts, K., Withers, P., & Murnane, D. (2020).摘自气溶胶学会肺部药物输送第 30 届爱丁堡国际会议中心,英国苏格兰,2019 年 12 月 11-13 日:一种表征吸入粉末的 3D 方法。A-1-A-31.在英国爱丁堡的肺部药物输送会议上展示的海报会议。https://doi.org/10.1089/jamp.2020.ab01.abstracts 引用本文 请注意,如果 Manchester Research Explorer 上提供的全文是作者接受的手稿或校样版本,则可能与最终发布的版本不同。如果引用,建议您检查并使用出版商的最终版本。
inscefflation:它们是一类用于应用体腔的粉末,例如耳朵,鼻子,阴道等。粉末必须非常细,必须找到足够深的腔的入口,以便在现场进行动作。,它借助称为“灭绝机”的设备,将其传递到溪流中的受影响部分,该设备将粉末吹到现场。某些不足含有挥发性液体成分,可能需要在粉末中分布均匀。不应通过蒸发去除去小部分中存在的主动挥发性液体,而应仅通过粉末中的三项掺入。制药行业包装以加压形式的不足,即气溶胶。气溶胶包含具有合适阀的粗壮容器中的药物,粉末的输送是通过非常低的沸点的液化或压缩气体推进剂来完成的。在按下阀的执行器时,推进剂将药物在流中输送。
摘要。功能梯度材料 (FGM) 是材料科学和工程领域的一项了不起的发明,它具有独特的性能,可用于各种应用。由于能够逐渐改变材料的成分、微观结构或机械性能等特性,FGM 具有无与伦比的适应性,使其适用于各种高强度应用。制造 FGM 的新方法之一是对粉末材料使用严重塑性变形 (SPD) 技术。粉末的 SPD 涉及几个关键步骤;该过程从选择具有不同成分和相的材料开始,然后混合粉末、冷压、SPD 方法,以及(如果需要)热处理。该过程通过表征和测试完成,以评估最终形成的 FGM 的微观结构和特性。FGM 将继续改变材料工程并推动其在许多工程领域和行业中的应用界限,因为它们表现出提高效率、耐用性和性能等有吸引力的能力。因此,本文探讨了通过 SPD 制造 FGM 的过程,并强调了其在 FGM 生产中的重要性和未来趋势。