普渡大学化学系、物理系和普渡量子科学与工程研究所,美国印第安纳州西拉斐特 47907 *电子邮件:kais@purdue.edu 摘要:我们提出三个核心思想:1. 量子空间的波粒二象性;2. 通过有序的量子泛函对对所有基本量子门进行分类;3. 一种称为“量子波门”的新型量子门。我们首先研究量子泛函,其与量子态的关系类似于基础量子物理中动量和位置波函数之间的关系:可以在对偶表示之间定义傅里叶变换和熵不确定性原理。量子泛函不仅仅是数学结构,而且具有明确的物理意义和量子电路实现。将量子泛函的分区解释与量子门的效应联系起来,我们通过有序的量子泛函对将所有基本量子门进行分类。通过将量子泛函推广到量子泛函,发现了新型的“量子波门”,作为传统量子门的量子版本。
3背景4目标6结果和讨论3.1欧盟设定的碳固存的目前是什么?3.2能够隔离碳的不同类型的景观类型?3.3如果它们处于最佳的保护/恢复状态,以及他们目前的碳量分别分别存储,它们各自的存储能力将是什么?3.4欧盟在欧盟中自然碳固存的能力有什么能力?3.5欧盟对天然碳固存的主要威胁是什么?3.6在土地上种植生物能源作物的成本的机会是什么?3.7登记欧洲森林以进行生物能源的机会成本是多少,何时可以将这些森林生长以使更多的碳隔离?40结论42参考
OA2ω,/A280 比率仅为 1/140 和 1/85,分别为 1.54±0.43 和 1.51±0.21。
摘要:随着当今社会的快速发展,交通环境变得越来越复杂。作为智能车辆的重要组成部分,轨迹跟踪因其稳定性和安全性引起了极大的关注。在高速工作等极端工作条件下,准确性和不稳定性很容易发生。在本文中,为分布式驱动车辆提出了一种轨迹跟踪控制策略,以确保在高速和低固定限制条件下进行横向稳定性。模型预测控制器(MPC)用于控制前轮角度,并且设计了粒子群优化(PSO)算法以适应MPC控制参数。滑动模式控制器控制后轮角度,并且通过分析β-来判断车辆不稳定性度。β相平面。在本文中设计了不同不稳定性度的控制器。最后,扭矩分隔器的设计目的是考虑驱动防滑。设计的控制器通过CARSIM和MATLAB-SIMULINK共模拟验证。结果表明,本文设计的轨迹跟踪控制器有效地提高了在确保稳定性的前提下的跟踪精度。
主要农作物,转基因食品的主要农作物及其安全评估,有机农业,园艺,兽医,兽医,渔业,粒土,脉搏产生,IPM,种子技术和其他相关领域的抗病品种。2。生物技术生物信息学,生物工程,疫苗和新药开发,干细胞,农业,环境,森林,动物和牲畜,水产养殖和渔业以及纳米生物技术等领域的生物技术等3。化学科学无机,有机,物理,组合,工业,合成和生物化学等。4。环境科学安全的饮用水和卫生水,减少污染,植物修复,自然资源管理,绿色能源,废物管理和废水处理等等。5。工程,建筑与技术
符号列表 α 岩体中薄弱面的方向。 β g , β l 分别为粒子群优化算法的全局和局部学习参数。 γ 土壤单位重量。 γ SVM 支持向量机核系数。 ϵ 高斯噪声。 ζ(x) 输入值 x 的高斯隶属函数。 θ 隧道掘进机俯仰角。 κ 土壤卸载-重新加载曲线的斜率。 μ(x) 高斯过程的平均向量。 ν l 隧道衬砌的泊松比。 ν s 土壤的泊松比。 ρ 1 , ρ 2 两个随机初始化的向量,其条目范围在 0 和 1 之间。 σ 高斯函数的标准偏差。 ϕ′ 土壤摩擦角。 ψ′ 土壤扩张角。 A 隧道掘进机的表面积。 a 使用模糊 c 均值聚类算法控制系统模糊性的参数。AR 隧道掘进机推进速度。b 可调偏差矢量。BI 岩体脆性指数。C 管串收敛。c 高斯函数均值。c′ 土壤黏聚力。CP 刀盘功率。CM 施工方法。D 隧道掘进机直径。dj 数据聚类中心 j。D c 隧道掘进机刀盘直径。DPW 弱面间深度。E l 隧道衬砌杨氏模量。E s 土壤杨氏模量。EI 抗弯刚度。EPB 土压平衡。f ( x ) 表示数据底层结构的潜在函数。FPI 场穿透指数。g* 粒子群优化算法的全局最佳历史位置。GSI 地质强度指数。H 隧道覆盖深度。H w 隧道掘进机上方地下水位高度。 it, il 土面沉降曲线横、纵向拐点。J FCM 模糊c均值聚类目标函数。JF 隧道掘进机顶进力。K 侧向土压力系数。ks 土的渗透性。k sub 路基反力模量。k ( x , x ′) 输入对x和x′的协方差函数。
2024年6月28日 — 发货地:钏路。NO。NO。参见食品代码。商品名称。预计数量。货号。规格。117/29(A) 7/30(JK) | 7/31(k)。15(周四) 16(周五) 17(周六)。1(周四)。2(周五)。3(周六)。4(周日)。5(周一)。6...
Agricultural and Life Sciences Programme provide creative education and necessary training in the broad agricultural Science and its allied fields The vast and varied agricultural Science has different segments like Agronomy, Horticulture, Agricultural Economics, Biochemistry, Genetics, Farm Management, Forestry, Entomology, Microbiology, Food Business, Plant physiology, Plant biotechnology, Seed technology ,Soil Science, Plant pathology,粒土,花卉培养等将为政府和私营部门提供广泛的职业机会,例如农业学家,农场经理,农业科学家,农业发展官员,食品微生物学家。他们还可以在高等教育和研究中取得进步和进步。
摘要:通过螺旋桨设计方法与粒子群优化 (PSO) 相结合,开发了一种降低螺旋桨驱动飞机能耗的航空结构算法。优化过程中考虑了多种螺旋桨参数,包括每个螺旋桨截面的翼型几何形状。螺旋桨性能预测工具采用收敛改进的叶片元素动量理论,该理论由从 XFOIL 和经过验证的 OpenFOAM 获得的翼型气动特性提供。根据实验 NACA 4 位数据估计失速角校正,并在出现收敛问题时使用。对气动数据进行校正以考虑压缩性、三维、粘性和雷诺数效应。根据实验数据拟合提出了旋转校正系数。采用基于欧拉-伯努利梁理论的结构模型,并根据有限元分析对其进行验证,同时讨论了离心力的影响。进行了一个案例研究,将弦长和螺距分布与涡流理论的最小损失分布进行了比较。使用印刷螺旋桨进行风洞试验,以得出整个程序的可行性以及 XFOIL 和 CFD 最佳螺旋桨之间的差异。最后,将最佳 CFD 螺旋桨与具有相同直径、螺距和运行条件的商用螺旋桨进行比较,显示出更高的推力和效率。
