摘要:本文研究了电池电化学模型的校准和验证问题,这是朝着准确估算电池重要变量的强制性步骤,例如充电状态(SOC)和健康状况(SOH)。在这里,考虑了单个粒子模型(SPM),该模型通过抛物线偏微分方程(PDES)数学描述了电池内部管理现象,但众所周知,其参数很难测量或估计。通过线性有限维模型适当地近似此模型后,这里提出了SPM校准的系统过程,并验证了电池循环在电动车辆应用中发出的实际数据,即,在标准驾驶周期的情况下。在一种新颖的SOC估计方法中,适当校准的SPM以及电压和电流的度量可以在分析上将内部空间分布的离子浓度与equlibrium浓度连接起来,这反过来又是电池SOC的图像。结果表明,SPM可以可靠地预测电池内部离子的浓度,并进一步用于社会准确估计。
C. L APEYRONIE 1*,MS A LFONSO 1,B. VIALA 2,J.-H. T ORTAI 1 1 格勒诺布尔阿尔卑斯大学、CNRS、CEA/LETI-Minatec、格勒诺布尔 INP、格勒诺布尔阿尔卑斯大学工程与管理学院、LTM、格勒诺布尔 F-38054、法国 2 格勒诺布尔阿尔卑斯大学、CEA、LETI、38000 格勒诺布尔、法国
本研究使用来自西洋紫草叶和茎的提取物,旨在提供一种简单且环保的方法来合成银纳米粒子 (AgNPs)。此外,该研究将检查提取物的天然产物化学性质,并评估其可能的抗炎、抗糖尿病、抗氧化和抗糖化作用。通过紫外-可见光谱、傅里叶变换红外和扫描电子显微镜 (SEM) 对银纳米粒子进行了表征。在标准条件下,使用各种方法进行抗氧化、抗糖尿病和抗炎活性。观察到的视觉颜色变化表明存在合成的 AgNPs。通过表面等离子体共振扫描验证了银纳米粒子的产生,结果显示纳米粒子在 400 纳米处具有吸收峰。此外,SEM 结果提供了对 AgNPs 尺寸分布的洞察,范围从 22 nm-68 nm,平均 43.66 nm。研究表明,西洋参叶和茎提取物具有生产具有抗氧化、抗炎、抗糖尿病和抗糖化作用的 AgNPs 的潜力。AgNPs 可能对糖尿病治疗和管理药物的开发很有价值。
图2:3D PDAC片段模型的开发。a。微流体芯片Identx3,AimBiotech TM的示意图。B.碎屑上胶原蛋白中癌细胞播种的示意图,随后的球体形成。C. PDAC肿瘤球体从单细胞(D0)与芯片上胶原蛋白成熟7天后发育的明亮场显微镜图像(D0)(D7)。比例尺= 100µm。d-f。 Live/Dead Assay的共聚焦显微镜图像(死=红色; Live = Green),带有(d)3D堆栈的Z-Procotity,在第8天芯片,(E-F)3D共聚焦堆栈重建。比例尺= 100µm。g-i。第二次谐波生成(SHG)显微镜图像肿瘤球体(绿色),周围的胶原基质(红色)3D堆栈(G)的Z-Proctions(g),重建了3D图像(H-I)。比例尺= 50µm。
Alexander L. Fetter,John Dirk Walecka和Leo P. Kadanoff的多粒子系统的量子理论是一本全面的教科书,提供了对非同性主义多个粒子系统的独立介绍。本书提供了对形式主义和应用的统一处理,使其成为该领域的研究生和老师的宝贵资源。它涵盖了诸如第二量量化,统计力学,规范变换以及对物理系统的应用,包括核物质,声子,电子,超导性和超流体氦气。文本旨在促进从上量子力学课程到解释有关多体问题的大量文献的实际过渡。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
量子过程层析成像 (QPT) 方法旨在识别(即估计)给定的量子过程。QPT 是一种主要的量子信息处理工具,因为它特别允许人们表征量子门的实际行为,而量子门是量子计算机的基石。然而,通常的 QPT 程序很复杂,因为它们对用作要表征过程的输入的量子态设置了几个约束。在本文中,我们扩展了 QPT 以避免两个这样的约束。一方面,通常的 QPT 方法要求人们知道,因此要非常精确地控制(即准备)用作所考虑量子过程输入的特定量子态,这很麻烦。因此,我们提出了一种盲目或无监督的 QPT 扩展(即 BQPT),这意味着这种方法使用的输入量子态的值是未知的和任意的,只是要求它们满足一些一般的已知属性(并且这种方法利用了所考虑量子过程的输出状态)。另一方面,通常的 QPT 方法要求人们能够准备相同(已知)输入状态的多个副本,这具有限制性。与此相反,我们提出了“单准备 BQPT 方法”(SBQPT),即只能对每个考虑的输入状态的一个实例进行操作的方法。这里通过数值验证的实用(S)BQPT 方法说明了这两个概念,在以下情况下:(i)使用随机纯态作为输入,并且它们所需的属性特别与定义它们的随机变量的统计独立性有关;(ii)所考虑的量子过程基于圆柱对称海森堡自旋耦合。作为基准,我们还引入了专用于所考虑的海森堡过程的非盲 QPT 方法,我们分析了它们的理论行为(这需要本文针对随机输入状态开发的工具),并通过数值测试它们对系统性和非系统性误差的敏感性,这些误差在实践中最有可能出现。这表明,即使对于非常低的准备误差(尤其是系统误差),这些非盲 QPT 方法的性能也远低于我们的 SBQPT 方法。我们的盲目和单一准备 QPT 概念可以扩展到更广泛的过程类别和基于其他量子态属性的 SBQPT 方法,如本文所述。
k相互作用粒子的关节分布的定量收敛速率会收敛到k独立的麦基恩 - 弗拉索夫sdes的解决方案,这引起了很多关注。有不同的感觉,可以使混乱的繁殖,例如强烈的感觉,瓦斯汀距离,相对熵和渔民信息等等,例如,有关更多详细信息,请参见[12,17]。对于任何波兰空间(E,ρ),令P(e)为配备弱拓扑的E的所有概率度量的收集。修复T> 0。在某些完整的填充概率空间(ω,f,(f t)t≥0,p)上,让w t成为n维的布朗运动。b:[0,t]×r d×p(r d)→r d,σ:[0,t]×r d×p(r d)→r d r n是可测量的,并在有限的集合上界定。令x 0为f 0-可衡量的r d d值随机变量,n≥1为整数,(x i 0,w i t)1≤i≤n为i.i.d.(x 0,w t)的副本。考虑平均场相互作用的粒子系统
图1:测定实验中电流诱导的力。(a)KERR显微镜图像显示了一个限制在40μm×7μm的带有漏斗类的丝线中的单个Skyrmion(深色斑点)。左侧和右侧的金触点允许沿线施加电流。(b-d)我们的方法的逐步应用为2.14∙106 A/m 2的电流密度。(b)用于施加在左侧(蓝色)和右(红色)的电流的偏置的天空分布。(c)产生的偏置PMF。(d)推断的纯固定能量景观(蓝色)和推断的纯力偏置(红色)。力偏置的中央区域的线性拟合(虚线黑线)的斜率等于天空上的力。(e)电流诱导的力对施加电流密度的强度图。通过将天空轨迹分为三个部分,并使用力偏差斜率的平均值和标准误差来估计数据点的误差。测量已在名义上的两个不同的设备上进行了与数据点颜色所示的同一样品上相同几何形状进行的。这些点进行调整以纠正Skyrmion尺寸的偏差;原始点以灰色给出。交叉表示模拟结果。
过去二十年来,氧化石墨烯 (GO) 一直处于碳纳米材料研究的前沿。由于其独特的性能,例如表面积大、抗拉强度高、存在可修饰的表面基团以及良好的生物相容性,石墨烯衍生物已用于扩展多个研究领域,包括电子学、材料科学、非线性光学和生物技术。[1–8] GO 正式衍生自石墨烯,石墨烯是单层碳原子以二维六边形晶格键合而成。[9,10] 石墨的化学氧化和剥离会产生 GO 表面基团,例如羧基、羟基、环氧基和羰基,为共价结合生物分子、药物或荧光团提供了绝佳的机会。这些基团的确切组成和数量是可变的,取决于合成途径。[2,11] 化学