摘要流量参数的准确测量通常取决于传感器的可访问性。光流评估技术,例如粒子图像速率(PIV)和粒子跟踪速度计(PTV),仅限于光学上透明的介质。但是,许多工业过程都涉及不透明的媒体,需要采用替代方法。本研究介绍了X射线粒子跟踪速度法(XPTV)的开发和应用,以研究此类介质中的流量。具体来说,检查了融合细丝制造(FFF)打印机的喷嘴内的流量。这项工作的新贡献是使用XPTV对加热流进行的首次分析,通过在聚合物流中引入钨粉作为对比剂来实现。该研究成功地可视化了抛物线速度曲线,证明了该方法的功效。
Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J. (2022)。 使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。 制造科学与工程杂志,144(091012)。 https://doi.org/10.1115/1.4055048Zhang,J.,Yang,X.,Sagar,S.,Dube,T.,Koo,D.D.,Kim,B.-G.,Jung,Y.-G。,&Zhang,&Zhang,J.(2022)。使用磨料水喷射技术对热屏障涂层过程的平滑颗粒流体动力学建模。制造科学与工程杂志,144(091012)。https://doi.org/10.1115/1.4055048
我们提出了一种用于光滑粒子流体动力学 (SPH) 方法的量子计算算法。我们使用规范化程序将 SPH 运算符和域离散化编码到量子寄存器中。然后,我们通过量子寄存器的内积执行 SPH 求和。使用一维函数,我们使用高斯和 Wendland 核函数以经典方式测试一维函数的核和以及一阶和二阶导数的方法,并将各种寄存器大小与分析结果进行比较。误差收敛速度在量子比特数上呈指数级增长。我们扩展了该方法以解决流体模拟中常见的一维平流和扩散偏微分方程。这项工作为更通用的 SPH 算法奠定了基础,最终导致在基于门的量子计算机上对复杂工程问题进行高效模拟。
顶部安装的俯仰点吸收器是最有前途的波浪能转换器之一,因为它可以轻松地连接到现有的海上结构上。然而,由于强烈的非线性流体动力学行为,很难准确预测其能量转换性能。本文使用光滑粒子流体动力学 (SPH) 来解决这种波结构相互作用问题。首先根据从楔形入水实验中获得的自由表面变形测量值来验证 SPH 方法。规则波与固定和自由俯仰设备相互作用的 SPH 模拟与测量数据高度吻合,为预测功率转换性能提供了信心。吸收功率和捕获宽度比随着波浪周期表现出单峰行为。在此分布中的峰值功率的波浪周期随着 PTO 阻尼而增加。根据观察到的设备尺度的缩放行为,最佳阻尼的较大尺寸设备能够有效吸收较长波长的入射波的能量。在有限深水中,较大器件相对于较小器件实现了更高的效率,其在2πh/λ=1.1时的峰值效率为选址提供了参考。
这是以最终形式出版的作品的作者手稿:Chen,C。X.,Carpenter,J。S.,Murphy,T.,Brooks,P。和Fortenberry,J。D.(2020)。吸引青少年和年轻人参与微生物组样本自我收集:成功的策略。护理生物学研究,https://doi.org/10.1177/1099800420979606