免疫疗法是治疗癌症的有力工具,但细胞因子和免疫剂的多效性严重限制了临床转化和安全性。为了满足这一尚未满足的需求,我们设计并表征了一种系统靶向细胞因子基因传递系统,该系统通过使用来自肿瘤靶向噬菌体的外壳蛋白对人重组腺相关病毒 DNA 进行变形衣壳化。我们发现,变形噬菌体/AAV (TPA) 颗粒比目前噬菌体衍生的载体提供更好的转基因传递,因为它能在细胞外空间更好地扩散,并改善细胞内运输。我们使用 TPA 来靶向传递编码细胞因子的转基因,用于白细胞介素 12 (IL 12 ) 以及 IL 15 和肿瘤坏死因子 α (TNF α ) 的新亚型,以进行肿瘤免疫治疗。我们的结果证明,它可以在体内对实体瘤进行选择性和有效的基因传递和免疫治疗,而不会损害健康器官。我们的变形粒子系统通过两种常用病毒的跨物种互补,为安全有效的基因传递和癌症免疫治疗提供了一种有希望的方式。
摘要。许多具有平均场相互作用的吉布斯度量是混乱的,因为N粒子系统中的任何K颗粒的集合都是渐近独立的,因为N→∞具有k固定或k = o(n)的n→∞。本文用成对相互作用的一类连续Gibbs的吉布斯度量量化了此概念,其中主要示例是由凸相互作用控制的系统,并均匀地凸出限制电位。K颗粒的边际定律与其极限产品度量之间的距离显示为O((K/N)C∧2),c profional con-Oft均与平方温度相关。在高温情况下,这基于熵的亚粘附性,这会改善先前的结果,熵的亚加性最多可以产生O(k/n)。正如高斯示例所证明的那样,绑定的O((k/n)2)无法改善。结果是非反应的,并且通过相对的渔民信息,相对熵或平方二次的Wasserstein度量来定量距离。该方法依赖于限制度量的先验功能不平等,用于根据(K + 1) - 粒子距离得出K粒子距离的估计值。
食源性感染是全球范围内传播的主要感染源之一。食源性病原体被认为是耐多药 (MDR) 病原体,对食品行业和健康消费者构成了严重问题,导致经济负担加重和院内感染。对增强型微生物检测工具的持续研究引起了人们对 CRISPR-Cas 系统和纳米粒子的兴趣。CRISPR-Cas 系统存在于某些原核生物的细菌基因组中,并被重新用作针对 MDR 病原体的治疗诊断工具。纳米粒子和复合材料也已成为针对 MDR 病原体的治疗诊断应用中的有效工具。人们认为,使用纳米粒子作为载体,将纳米粒子系统与 CRISPR-Cas 协同组合可以克服 CRISPR-Cas 系统的诊断局限性。在本综述中,我们讨论了 CRISPR-Cas 技术的诊断应用及其在噬菌体抗性、噬菌体疫苗接种、菌株分型、基因组编辑和抗菌等方面的潜在用途。我们还阐明了纳米粒子对食源性 MDR 病原体的抗菌和检测作用。此外,我们还讨论了 CRISPR-Cas 和纳米粒子在病原体清除和药物输送载体中的协同作用的新型组合方法。
k相互作用粒子的关节分布的定量收敛速率会收敛到k独立的麦基恩 - 弗拉索夫sdes的解决方案,这引起了很多关注。有不同的感觉,可以使混乱的繁殖,例如强烈的感觉,瓦斯汀距离,相对熵和渔民信息等等,例如,有关更多详细信息,请参见[12,17]。对于任何波兰空间(E,ρ),令P(e)为配备弱拓扑的E的所有概率度量的收集。修复T> 0。在某些完整的填充概率空间(ω,f,(f t)t≥0,p)上,让w t成为n维的布朗运动。b:[0,t]×r d×p(r d)→r d,σ:[0,t]×r d×p(r d)→r d r n是可测量的,并在有限的集合上界定。令x 0为f 0-可衡量的r d d值随机变量,n≥1为整数,(x i 0,w i t)1≤i≤n为i.i.d.(x 0,w t)的副本。考虑平均场相互作用的粒子系统
第 3 天:UV 映射概述 – 介绍如何展开网格并准备进行纹理处理。第 4 天:使用图像映射进行纹理处理 – 使用图像映射和 UV 坐标将基本纹理应用于您的车辆模型。第 5 天:高级 UV 映射技术 – 探索更复杂的展开方法,以获得更好的纹理应用。第 6 天:着色和材质 – 了解如何使用 Blender 的着色器系统创建和分配逼真的材质。第 7 天:3D 场景的照明 – 为您的车辆模型设置有效的照明,以增强纹理可见性和真实感。第 8 天:渲染设置和优化 – 了解高质量渲染和性能优化所需的设置。第 9 天:项目审查和改进 – 根据讲师反馈确定纹理、材质和渲染设置。第 10 天:项目 1 提交和审查 – 提交您的渲染车辆项目并参与同行评审。项目 2:渲染场景(第 20 天截止)第 11 天:环境建模简介 - 学习构建 3D 环境的技术,重点是场景构图。第 12 天:建模背景元素 - 开始建模基本场景元素,例如建筑物、树木和地形。第 13 天:纹理场景模型 - 使用各种技术和图像贴图将纹理应用于背景和前景模型。第 14 天:环境场景的照明 - 尝试不同类型的照明设置以在场景中营造氛围。第 15 天:高级材质创建 - 为场景中的自然和人造物体创建逼真的材质(例如玻璃、金属)。第 16 天:摄像机角度和构图 - 设置摄像机视图并尝试构图以增强场景的视觉冲击力。第 17 天:粒子系统和效果 - 学习如何创建粒子系统以实现烟雾、雨或雾等环境效果。第 18 天:渲染和后期处理 - 了解如何渲染整个场景并在 Blender 中应用后期处理技术。第 19 天:场景审查和反馈 – 根据讲师反馈完善场景并准备最终渲染。第 20 天:项目 2 提交和审查 – 提交渲染的场景项目并参与同行评审和讨论。项目 3:渲染角色(截止时间为第 30 天)第 21 天:角色建模简介 – 开始创建基本的 3D 角色模型,重点关注解剖和比例。第 22 天:角色雕刻技巧 – 使用 Blender 的雕刻工具添加细节并完善角色的形态。第 23 天:角色 UV 贴图 – 展开角色模型以实现高效纹理。
肿瘤组织无法满足这种过度需求,而这些血管往往形成不良且“渗漏”。由于纳米粒子与天然小分子和生长因子相比尺寸较大,它们很少穿过正常组织中正常形成的血管壁。然而,肿瘤中渗漏的血管系统允许纳米粒子穿过其壁,并导致纳米粒子在肿瘤内积聚。肿瘤还表现出不良的淋巴引流,这意味着通过渗漏血管进入肿瘤的纳米粒子从癌组织中带走的效率不如从正常组织中带走的效率高,从而增加了这种在肿瘤中的积累。纳米粒子在癌组织中的这种被动积累凸显了它们作为“魔法子弹”的能力。纳米粒子的第二个好处是它们的表面积与体积比大,这意味着一个纳米粒子可以携带大量有效载荷到达目标,从而提供了一种有吸引力的药物输送方法。这种大的表面积还允许将多个不同的有效载荷附着到一个纳米粒子上,4 从而允许它们共同递送到目标,这具有许多治疗益处。诊断工具也可以与有效载荷一起附着在纳米粒子上,以产生治疗效果,其中纳米粒子系统可用于
量子系统可以具有非古典相关性,这些相关已成为量子物理学的内在部分[1]。尤其是纠缠一直是一项密集研究的主题[2,3]。通常,如果不能将其作为产品状态的凸组组合写成,则多粒子系统会纠缠。对于许多应用程序,两分量子状态被认为是关键资源[4,5]。在光子的情况下,可以在各种自由度之间检测到纠缠,例如极化,空间或时间。极化输入的光子已在量子信息方案中实现,例如量子密钥分布(QKD)[6],超密集编码[7],量子触发[8],量子计算[9],量子干涉光学量表[10]等有很多方法可以产生极化的光子对,例如自发参数下调[11]或自发的四波混合[12]。量子状态断层扫描(QST)是量子信息理论发展的固有的。任何协议都需要特征良好的量子状态。在许多应用中,在许多应用中,确定物理系统准确数学表示的能力起着核心作用[13 - 16]。尤其是,由于涉及单个光子的实验的巨大潜力,光子断层扫描引起了很多关注[17]。因此,在目前的工作中,我们
模块 5:虚功和能量法- 虚位移、质点虚功原理和理想刚体系统、自由度。主动力图、有摩擦系统、机械效率。保守力和势能(弹性和重力)、平衡能量方程。能量法在平衡中的应用。平衡稳定性。模块 6:粒子动力学- 粒子运动学:直线运动、平面曲线运动 - 直角坐标、法向和切向坐标、极坐标、空间曲线 - 圆柱、球面(坐标)、相对运动和约束运动。粒子动力学:力、质量和加速度 - 直线和曲线运动、功和能量、冲量和动量 - 线性和角向;冲击 - 直接和斜向。粒子系统动力学:广义牛顿第二定律、功、冲量、能量和动量守恒定律 模块 7:刚体动力学简介 平面刚体运动学:刚体绕固定轴旋转的方程、一般平面运动、平面运动中的瞬时旋转中心、粒子相对于旋转框架的平面运动。科里奥利加速度平面刚体动力学:刚体运动方程、平面运动中刚体的角动量、刚体的平面运动和达朗贝尔原理、刚体系统、受限平面运动;作用于刚体上的力的能量和功、平面运动中刚体的动能、刚体系统、能量守恒、刚体的平面运动 - 冲量和动量、刚体系统、角动量守恒。
关联粒子系统出现在现代科学的许多领域,代表了自然界中最难解决的计算问题之一。当相互作用变得与其他能量尺度相当时,这些系统中的计算挑战就会出现,这使得每个粒子的状态都依赖于所有其他粒子 1 。三体问题缺乏通解,强关联电子缺乏可接受的理论,这表明当粒子数或相互作用强度增加时,我们对关联系统的理解就会逐渐减弱。相互作用系统的标志之一是多粒子束缚态的形成 2–9 。在这里,我们开发了一个高保真可参数化的 fSim 门,并在一个由 24 个超导量子比特组成的环中实现自旋-½ XXZ 模型的周期量子电路。我们研究这些激发的传播,并观察它们对多达 5 个光子的束缚性质。我们设计了一种相敏方法来构建束缚态的少体谱,并通过引入合成通量来提取它们的伪电荷。通过在环和附加量子位之间引入相互作用,我们观察到束缚态对可积性破坏的意外恢复力。这一发现与不可积系统中的束缚态在其能量与连续谱重叠时不稳定的想法相悖。我们的工作为相互作用光子的束缚态提供了实验证据,并发现了它们在可积性极限之外的稳定性。
摘要 在本文中,我们在具有 CP 破坏相互作用的标准模型背景下,研究了三体 H → γ l ¯ l 衰变(l = e , μ , τ )的量子纠缠特性,该模型位于轻子汤川区。我们的目的是阐明最终光子、轻子和反轻子在相空间中的纠缠分布。这些罕见的希格斯玻色子衰变发生在 1 圈水平,通过计算并发度和研究贝尔非局域性,为研究三体系统中基本相互作用的量子关联提供了独特的机会。此外,我们还探讨了衰变后和自蒸馏现象。多体纠缠测度比二体情况下的纠缠测度具有更丰富的结构,因此在对撞机现象学中值得更多关注。在这一方面,我们分析了这些三体希格斯玻色子衰变的新可观测量,这些可观测量可以扩展到高能范围内的其他多粒子系统。我们发现纠缠在最终粒子之间表现出来,偶尔在特定的运动学配置中达到最大纠缠状态。此外,这些衰变通道对于贝尔非局域性测试很有前景,但这种可观测量中的 CP 效应被轻子质量抑制。