微粒是由合成,不可生物降解和不可生物降解聚合物组成的1至1000微米之间的1至1000微米之间的游离球形粉尘。有两种类型的微粒:微胶囊和微基质。主要类型的微粒类型是磁性微粒,聚合物微粒,生物粘附的微粒,可生物降解的聚合物微粒,合成聚合物微粒,浮动微粒和放射性微粒。微载体比纳米颗粒的优势在于,它们在淋巴运输过程中不会越过100 nm间质,因此在局部起作用。有毒物质可以以微封装和干颗粒的形式固化。此外,引入了众多物理化学参数(例如药物释放,热性能和粒径)的方法,以及新的测试,例如体外浸出测试和浮动测试。
采用简单的化学氧化法在优化的实验条件下制备 MnFe 2 O 4 磁性纳米粒子 (MNPs)。通过在化学反应过程中引入铁离子作为尺寸减小剂来减小粒径。MnFe 2 O 4 MNPs 的饱和磁化强度在 45 到 67 emu/g 之间调整。透射电子显微镜 (TEM) 显微照片证实了粒度分布的变化。用较高浓度的铁离子制备的较小尺寸 MnFe 2 O 4 MNPs 实现了 415 F/g 的最高比电容。结果表明,铁离子可用于通过化学氧化法控制铁氧体的尺寸,并且尺寸减小的 MnFe 2 O 4 MNPs 可能是电化学超级电容器应用的合适选择。2020 Elsevier BV 保留所有权利。
余乳,目的是在商业上相关的25 mW th的商业相关规模上证明BTG生物化的快速热解技术。的准备工作已于2009年开始,但是热解油厂的实际建设刚刚开始于2014年初,第一个热解油于2015年3月生产。富有粉状植物设计用于喂养木本生物量,尤其是木质碎片和罚款 - 荷兰的颗粒处理和储存的副产品。此原料几乎不需要进一步的预处理。粒径已经适用于喂食热解过程,而水分含量略高于10 wt%。已经安装了一个相对较小的干衣机,将原料干燥至5 wt%的水分含量。
摘要:本文使用代表性样品研究了位于西班牙安达卢西亚西部的原始高岭土矿床。表征方法包括 X 射线衍射 (XRD)、X 射线荧光 (XRF)、筛分和沉降粒度分析以及热分析。确定了陶瓷性能。在一些测定中,我们使用了来自 Burela(西班牙卢戈)的商用高岭土样品,用于陶瓷工业,以便进行比较。高岭土矿床是由富含长石的岩石蚀变形成的。这种原始高岭土被用作当地陶瓷和耐火材料制造的添加剂。然而,之前没有关于其特性和烧成性能的研究。因此,本研究的意义在于对这一主题进行科学研究并评估其应用可能性。用水冲洗原始高岭土,以增加所得材料的高岭石含量,从而对岩石进行富集。结果表明,XRD 测定原料中的高岭石含量为 20 wt%,其中粒径小于 63 µ m 的颗粒占 ~23 wt%。粒径小于 63 µ m 部分的高岭石含量为 50 wt %。因此,通过湿法分离可以提高该原料高岭土的高岭石含量。但该高岭土被视为废高岭土,XRD 鉴定为微斜长石、白云母和石英。通过热膨胀法 (TD)、差热分析 (DTA) 和热重法 (TG) 进行热分析,可以观察到高岭石的热分解、石英相变和烧结效应。将该原料高岭土的压制样品、水洗获得的粒径小于 63 µ m 的部分以及用锤磨机研磨的原料高岭土在 1000-1500 ◦ C 范围内的几个温度下烧制 2 小时。测定并比较了所有这些样品的陶瓷性能。结果表明,这些样品在烧结过程中呈现渐进的线性收缩,小于 63 µ m 的部分的最大值约为 9%。总体而言,烧成样品的吸水率从 1050 ◦ C 时的约 18-20% 下降到 1300 ◦ C 烧成后的几乎为零,随后实验值有所上升。在 1350 ◦ C 烧成 2 小时后,开孔气孔率几乎为零,并且在研磨的生高岭土样品中观察到的体积密度达到最大值 2.40 g/cm 3。对烧成样品的 XRD 检查表明,它们由高岭石热分解产生的莫来石和原始样品中的石英组成,除玻璃相外,它们还是主要晶相。在 1300–1350 ◦C 下烧结 2 小时,可获得完全致密或玻璃化的材料。在本研究的第二步中,研究了之前研究的有希望的应用,即通过向该高岭土样品中加入氧化铝(α-氧化铝)来增加莫来石的含量。混合物的烧结,在湿法加工条件下,用这种高岭土和 α-氧化铝制备的莫来石,通过在高于 1500 ◦ C 的温度下反应烧结 2 小时,使莫来石的相对比例增加。因此,可以使用这种高岭土制备莫来石耐火材料。这种高铝耐火材料的加工有利于预先进行尺寸分离,从而增加高岭石含量,或者更好地对原料高岭土进行研磨处理。
Dentsply Sirona推出了一种新的高强度玻璃陶瓷材料Cerec Tessera™。它的特征是晚期锂陶瓷材料。它具有40-45%的玻璃含量,亚微米粒径约为0.5 µm。它由约90%二硅酸盐晶体(5%磷酸锂)组成,其余的5%Virgilite晶体为小(<100纳米)硅酸盐硅酸盐硅酸盐骨骼状晶体。材料的高强度是通过涂抹表面釉料并将铣削的恢复在Speedfire烤箱(Dentsply Sirona)中的4½分钟矩阵发射周期中产生的。矩阵启动通过形成新的virgilite晶体,表面愈合玻璃含量,并增加密度以达到大于700 MPa的弯曲强度,从而优化了晶体结构。
使用铝合金的添加剂制造是增加工业利益的主题。使用高功率激光器和粉末饲料的定向能量沉积是一个有用的选择,但是粉末流和激光束之间的相互作用尚未完全了解。众所周知,粉末颗粒在激光束中加热,一些理论模型预测它们可以达到汽化温度,并因相关的后坐力压力而改变了飞行路径。为了了解有关这些现象的更多信息,在不同的激光功率(高达6 kW)的高速摄像头和三批不同粒径的粉末(ALSI10MG)上观察到粉末流。结果表明,随着激光功率的增加,粉末聚焦的增加。此外,发现一些颗粒在激光束中分解。证明粒子瓦解最有可能是由后坐压力引起的动量引起的。
在开发SARNA-LNP COVID-19疫苗时,精密纳米系统证明了对下游过程参数进行早期测试的重要性。这种治疗性的重要步骤是内线稀释和缓冲液交换,以从配方中去除乙醇并准备在最终冷冻器中存储。在TFF处理LNP1之后,两种配方(LNP1和LNP2)最初在不同的流速和尺度(IGNITE,BLAZE,GMP)下产生了相似的CQA(粒径,多分散性和包封效率),而LNP2的大小显着增加,而LNP2则保持了这些特征。这项研究表明,某些配方对下游过程敏感,并且通过较小规模测试配方尽早确定这些CPP可以节省时间,材料,并降低规模上的危险。
在商业设备中大量使用锂离子电池(LIB),这引起了人们对这些寿命终止液体在经济和环境前景中造成的巨大电子废物的关注。本文概述了电子废物物流,收集,存储和各种预处理程序,以从污染水平较低的消费液中回收黑色质量。预处理阶段描述了细胞成分的环保且可持续的行业可行的机械分离过程,例如不同的细胞放电方法,通过诅咒进行机械拆卸,基于粒径分数和顺序隔离的深层筛查。我们强调所有恢复阶段,都有挑战,并提出了可行的高度材料恢复的途径,并以高回收率恢复,这可能是胜利 - 环境和制造商的胜利。
在开发SARNA-LNP COVID-19疫苗时,精密纳米系统证明了对下游过程参数进行早期测试的重要性。这种治疗性的重要步骤是内线稀释和缓冲液交换,以从配方中去除乙醇并准备在最终冷冻器中存储。在TFF处理LNP1之后,两种配方(LNP1和LNP2)最初在不同的流速和尺度(IGNITE,BLAZE,GMP)下产生了相似的CQA(粒径,多分散性和包封效率),而LNP2的大小显着增加,而LNP2则保持了这些特征。这项研究表明,某些配方对下游过程敏感,并且通过较小规模测试配方尽早确定这些CPP可以节省时间,材料,并降低规模上的危险。
抑郁症是一种慢性精神障碍,其特征是持续情绪低落和兴趣丧失。抑郁症的治疗方法多种多样,但可能不足以治愈。基于药物的治疗方案具有起效慢、生物利用度低和药物副作用等缺点。纳米载体药物输送系统 (NDDS) 因其有助于药物通过血脑屏障并提高生物利用度而受到越来越多的关注,这可能有利于治疗抑郁症。由于纳米载体的粒径和物理化学性质,它有望提高抗抑郁药的稳定性和溶解度,从而提高药物浓度。此外,配体修饰的纳米载体可以作为靶向直接药物释放系统并减少药物副作用。本综述的目的是提供对纳米载体药物输送系统和不同摄入途径的相关抗抑郁药的最新了解,为抑郁症患者的治疗奠定基础。