熔融盐电池,称此称为热电池,在为广泛的防御应用提供按需电力方面起着至关重要的作用。尽管热电池的制造和认证仍然是一项复杂,艰巨的努力,但较长的存储寿命和令人难以置信的热电池的功率密度将它们定位为无数系统中的首选电源。引入了改进的阴极材料,钴二硫化物(COS 2),已扩大了热电池的性能状态,并产生了更多的用例。然而,改进的阴极材料的结构提出了一些制造挑战,这些挑战阻碍了许多高量生产应用的采用。在当前的工作中,概述了一些进步,这些进步允许使用新颖的COS 2 Catholyte材料继续准时交付高量热电池。Enersys Advanced Systems Inc.(EAS)(EAS)通过提供量身定制的粒径分布,连续的颗粒制造技术和半自动装配设备,证明了使用Superior Cos 2电化学解决方案提供高量生产要求的能力和能力。关键字热电池;高体积生产;钴二硫化物;阴极;电化学细胞
2025年6月2日,星期一上午7:00 - 上午8:00课程注册劳奇商业中心291/292/293上午8:00 - 上午9:30讲座1自由基聚合机制和动力学(F. Joseph Schork)上午9:30 - 上午9:40咖啡休息。上午9:40 - 上午11:10讲座2乳液聚合机制和动力学(F. Joseph Schork)上午11:10 - 上午11:20咖啡休息。 上午11:20 - 下午12:50讲座3乳液聚合中的分支和嫁接(Peter A. Lovell)下午12:50 - 下午1:50 午餐劳奇商业中心291/292/293下午1:50 - 下午3:20讲座4表面活性剂在乳液聚合和动力学中的作用(Mohamed S. El-Aasser)下午3:20 - 下午3:30咖啡休息。 下午3:30 - 下午5:00演讲5半连续乳液聚合和结构化乳胶(Michael F. Cunningham)下午6:00 - 晚上8:00披萨搅拌机 - 参与者和演讲者,2025年6月3日,星期二,上午8:00 - 上午9:30讲座6乳胶系统的胶体稳定和不稳定机制(Mohamed S. El-Aasser)上午9:30 - 上午9:40上午9:40咖啡休息 - 晚上11:10讲座7乳胶粒径和粒径分布的表征:实验方法(安德鲁·霍林斯沃思)上午11:10 - 上午11:20上午11:20咖啡休息 - 下午12:50讲座8胶体结构与丙烯酸乳胶的应用之间的相关性(Bernd Reck)下午12:50 - 下午1:50上午9:40 - 上午11:10讲座2乳液聚合机制和动力学(F. Joseph Schork)上午11:10 - 上午11:20咖啡休息。上午11:20 - 下午12:50讲座3乳液聚合中的分支和嫁接(Peter A. Lovell)下午12:50 - 下午1:50 午餐劳奇商业中心291/292/293下午1:50 - 下午3:20讲座4表面活性剂在乳液聚合和动力学中的作用(Mohamed S. El-Aasser)下午3:20 - 下午3:30咖啡休息。 下午3:30 - 下午5:00演讲5半连续乳液聚合和结构化乳胶(Michael F. Cunningham)下午6:00 - 晚上8:00披萨搅拌机 - 参与者和演讲者,2025年6月3日,星期二,上午8:00 - 上午9:30讲座6乳胶系统的胶体稳定和不稳定机制(Mohamed S. El-Aasser)上午9:30 - 上午9:40上午9:40咖啡休息 - 晚上11:10讲座7乳胶粒径和粒径分布的表征:实验方法(安德鲁·霍林斯沃思)上午11:10 - 上午11:20上午11:20咖啡休息 - 下午12:50讲座8胶体结构与丙烯酸乳胶的应用之间的相关性(Bernd Reck)下午12:50 - 下午1:50上午11:20 - 下午12:50讲座3乳液聚合中的分支和嫁接(Peter A. Lovell)下午12:50 - 下午1:50午餐劳奇商业中心291/292/293下午1:50 - 下午3:20讲座4表面活性剂在乳液聚合和动力学中的作用(Mohamed S. El-Aasser)下午3:20 - 下午3:30咖啡休息。下午3:30 - 下午5:00演讲5半连续乳液聚合和结构化乳胶(Michael F. Cunningham)下午6:00 - 晚上8:00披萨搅拌机 - 参与者和演讲者,2025年6月3日,星期二,上午8:00 - 上午9:30讲座6乳胶系统的胶体稳定和不稳定机制(Mohamed S. El-Aasser)上午9:30 - 上午9:40上午9:40咖啡休息 - 晚上11:10讲座7乳胶粒径和粒径分布的表征:实验方法(安德鲁·霍林斯沃思)上午11:10 - 上午11:20上午11:20咖啡休息 - 下午12:50讲座8胶体结构与丙烯酸乳胶的应用之间的相关性(Bernd Reck)下午12:50 - 下午1:50下午3:30 - 下午5:00演讲5半连续乳液聚合和结构化乳胶(Michael F. Cunningham)下午6:00 - 晚上8:00披萨搅拌机 - 参与者和演讲者,2025年6月3日,星期二,上午8:00 - 上午9:30讲座6乳胶系统的胶体稳定和不稳定机制(Mohamed S. El-Aasser)上午9:30 - 上午9:40上午9:40咖啡休息 - 晚上11:10讲座7乳胶粒径和粒径分布的表征:实验方法(安德鲁·霍林斯沃思)上午11:10 - 上午11:20上午11:20咖啡休息 - 下午12:50讲座8胶体结构与丙烯酸乳胶的应用之间的相关性(Bernd Reck)下午12:50 - 下午1:50午餐劳奇商业中心291/292/293下午1:50 - 下午3:20第9讲9逆乳液聚合(Donna Visioli)下午3:20 - 下午3:30咖啡休息3:30 pm - 下午5:00演讲10乳胶电影编队(彼得·A·洛夫尔),2025年6月4日,星期三,上午8:00 - 上午9:30讲座11小型乳化:乳胶系统通过单体液滴中的聚合和聚合物溶液的直接乳化(Mohamed S. El-Aasser)上午9:30。 - 上午9:40上午9:40咖啡休息 - 晚上11:10第12座生活的激进聚合和emul sion聚合物/聚合物胶体的未来方向的进步(迈克尔·F·坎宁安)上午11:10 - 上午11:20上午11:20咖啡休息 - 下午12:50讲座13乳胶流变学(Cesar A. Silebi)
©Afyon Kocatepe University在这项研究中,强调了与Graffiti Hummers Tour方法的氧化基质合成的性能评估。在Hummers Tour方法中,它的目的是通过仅更改磷酸,硼酸或硼砂脱皮酸化合物来评估这些化学物质对氧化石墨烯合成的影响,以使所有条件保持不变。氧化石墨烯样品;具有BET分析(YA)的表面积,具有FTIR的结构表征,具有ZETA电位(ZP)的Zeta-Sızer和粒径分布(PB),具有氧化度(C/O)的SEM+EDS,通过分析ID/IG之间的障碍率,通过分析结构分析,具有氧化度(C/O),晶体尺寸(Kb)和Raman分析)。愈合率是通过参考涂鸦样品的特征来确定的。恢复率的最佳结果;它是在与磷酸合成的氧化石墨烯样品中获得的,pb的Pb为7.7%,C/O比为97.4%,ZP为100.5.5%,KB为84.30%,硼砂脱发的KB合成。d/g的良好愈合率。该研究的结果表明,使用硼化合物代替磷酸合成是有利的。关键字:氧化植物;悍马法;硼酸; Boraks Deka水合物; BET表面积;粒度
在基于粉末床的添加剂制造(AM)中粉末扩散的不确定性在制造零件的质量和重复性方面提出了挑战。这些挑战由于粉末床颗粒之间存在的空隙而导致高孔隙率。这项工作着重于使用SS316L作为模型材料在粉末流动性上引起的粒径分布(PSD)引起的不确定性。分析了各种尺寸的颗粒,范围为10 µm至100 µm,以及双峰比为70:30的球形和卫星形颗粒。将使用USP 616确定每个样品的挖掘密度,表观密度和Hausner比率。较小的粒径已显示可降低体积密度和表观密度。同时,颗粒的形状也有助于粉末颗粒之间的包装能力。卫星粉已被证明可以增加粉末的直径,从而增强了粉末颗粒的散装密度。已显示双峰颗粒同时增加体积和挖掘的密度,而较小的粉末无法填充较大颗粒之间存在的空隙。但是,随着粉末颗粒之间的尺寸比的增加,大量密度降低,表明较小的粉末能够填补颗粒之间的间隙。在用Hausner比值来比较粉末颗粒时,双峰颗粒已显示出最差的流动性,值为1.19856。这是由于以下事实:较大颗粒之间的较小颗粒会增加粉末之间的摩擦。因此,本研究说明了粒度和形状如何影响粉末堆积密度,这对于优化材料设计和加工技术至关重要
模块 A:自然资源、生态系统、生物多样性及其保护:自然资源和生态系统、森林、草原、沙漠和水生生态系统、全球、国家和地方各级生物多样性、生物多样性保护 模块 B:空气污染 介绍空气质量管理、气象学的基本过程、空气污染物 - 气态和颗粒物、污染物标准、环境和来源标准、气溶胶:气溶胶的特性、粒径分布、测量方法;传输行为:扩散、沉降、惯性;能见度;颗粒控制系统的原理。 模块 C:水处理 讨论水质成分并介绍水和废水处理过程的设计和操作。 模块 D:固体废物管理和气候变化 固体和危险废物管理的不同方面。气候变化和温室气体排放,减少温室气体排放的技术。气候变化及其可能的原因。模块 E:社会学/环境主义 描述:社会学传统中的环境主义、可持续性、南北差距、环境研究中的政治经济学方法、环境问题辩论 模块 F:经济学 能源经济学和金融市场、市场动态、能源衍生品、能源效率;可持续发展:概念、测量和策略、经济发展与环境的相互作用 模块 G:哲学 环境伦理、深层生态学、实用生态学、宗教和对环境伦理的态度、生态女性主义及其演变。 模块 H:实地工作和项目:访问当地以记录环境资产、简单生态系统的案例研究以及有关当前环境问题的小组讨论。
工业化时代导致大气二氧化碳浓度的急剧增加,这些二氧化碳浓度现在需要各种补救策略,例如CO 2捕获和存储。在这项研究中,提出了碳酸钙颗粒,作为将水基质中的CO 2的新转化途径捕获到密集的固体中。在本文中,我们证明了流体化的反应器在不同的pH条件下,在没有种子材料的情况下,通过捕获的CO 2从捕获的CO 2产生紧凑的碳酸钙颗粒的有效性。使用钙与碳酸盐比的恒定值,使用碳酸盐的碳酸盐含量和插入率,而操作pH的速度则在8.5到11.0时变化。在pH值为10.0±0.2时分别发现了92%和90%的碳酸盐去除和颗粒状效率分别为92%和90%,在10.0±0.2处发现碳酸盐离子的最低每日碳酸盐浓度在16.6 mg L 1下通过碱化测试测量。在最佳工作pH值时,获得了直径1 E 2 mm(〜93.6 g)的大型紧凑型颗粒,总体粒径分布倾向于较大尺寸。颗粒的形态分析揭示了它们的光滑表面和子圆形的形状,而结晶和元素分析则将其鉴定为高纯度碳酸钙。此外,提出了自发均质成核,颗粒聚集,晶体生长和颗粒状作为碳酸钙颗粒的主要机制。©2020 Elsevier Ltd.保留所有权利。
类似芬顿的反应中使用的化学氧化剂涉及过氧化氧化物(H 2 O 2)和硫酸盐(例如过氧硫酸盐(PDS,S 2 O 8 2 - )和过氧甲硫酸盐(PMS,HSO 5-−S)),可以激活使用同型和Hetogenos of catlyos和Hetogenos Catlyss,它们可以激活其。尽管金属离子(例如,Co 2+,Fe 2+,Cu 2+)及其可溶性复合物在同质系统中有效地应用,16-18这种可溶性催化剂的双方恢复会导致继发性污染,限制其应用(图。1)。相反,异质的芬顿样催化剂通过提高稳定性和易于分离来解决这些问题。19 - 21尤其是一些金属基杂种催化剂,例如纳米金属氧化物,金属纳米颗粒(NPS)和金属单原子催化剂(SAC),引起了人们越来越多的注意力,这是由于其出色的活性引起的芬顿样反应。22 – 24 However, the con ned surface locations of metal active centers in heterogeneous NP catalysts result in inferior catalytic e ffi ciency compared with their homogeneous counterparts, su ff ering from low metal atom utilization e ffi - ciency because of agglomeration of metal atoms and embed- ding in the bulk of NP catalysts.25,26此外,大多数报道的NP催化剂具有不均匀的粒径分布和多功能表面结构的特性,这给探索固有的催化机制带来了巨大的挑战,并在类似芬顿的反应中建立了结构 - 活性关系。24,27,28
目的:为突破各级生物屏障,提高siRNA的递送效率,通过组氨酸、胆固醇修饰的羧甲基壳聚糖与抗EGFR抗体(CHCE)自组装,制备了一种多功能siRNA递送系统(CHCE/siRNA纳米粒)。方法:通过动态光散射和扫描电镜检测CHCE/siRNA NPs的形貌;体外通过流式细胞术和共聚焦激光扫描显微镜评估其肿瘤靶向性、细胞摄取和内体逃逸能力,证实了CHCE/siRNA NPs的基因沉默和细胞杀伤能力;体内通过IVIS成像系统检测CHCE/siRNA NPs的生物分布,并证实了NPs在裸鼠肿瘤模型中的治疗效果。结果:CHCE/siRNA NPs呈纳米球形,粒径分布窄。体外实验中,CHCE/siRNA NPs 兼具肿瘤靶向性和 pH 响应性的双重功能,能够促进细胞结合、细胞摄取和内体逃逸,可有效沉默血管内皮生长因子 A (VEGFA),引起细胞凋亡并抑制增殖。体内实验中,CHCE/siRNA NPs 可靶向肿瘤部位,敲低 VEGFA,达到更好的抗肿瘤效果。结论:成功制备了一种兼具肿瘤靶向性和 pH 响应性的新型 siRNA 递送系统,该系统可突破生物学屏障,深入肿瘤,达到更好的肿瘤治疗效果,为 siRNA 提供了一种新的理想递送平台。关键词:多功能羧甲基壳聚糖,靶向递送,内体逃逸,基因沉默,抗肿瘤治疗
受控释放的微粒为增强患者兼容并最小化剂量频率的途径提供了有希望的途径。在这项研究中,我们旨在设计使用Eudragit S100和Methocel K 100 M聚合物作为控制剂的Glipizide的受控微粒。通过一种简单的溶剂蒸发方法制造了微粒,采用各种药物与聚合物比例制造出标记为F1至F5的不同受控释放批次。对微粒的评估包含一系列参数,包括流量性能,粒度,形态,百分比,捕获效率,药物加载百分比和溶解研究。此外,还采用了各种动力学模型来阐明药物释放机制。此外,还利用了差异和相似性因子来比较测试公式的溶解轮廓与参考公式。可压缩性指数和休息角表示所制备的微粒的有利流量,其值分别在8至10和25至29的范围内。从95.3到126μm的微粒的粒径分布。令人鼓舞的是,微粒的产量高(66%至77%),夹带效率(80%至96%)和药物加载百分比(46%至54%)。所有配方的批处理均显示出受控的药物释放曲线,最多延长了12个小时,在异常的非棘手扩散模式之后,glipizide释放。然而,参考公式和各种聚合物微粒的药物释放曲线不能满足可接受的差异和相似性因子的限制。体内研究表明在12小时内持续降血糖作用,表明受控释放的微粒的功效。总体而言,我们的发现表明,在设计受控释放的微粒中成功利用了聚合物材料,从而降低了点频率并有可能提高患者的依从性。
使用 Mn3O4 八面体制备的 Si 掺杂 LiMn2O4 正极材料增强的 LiBs 电化学性能 朱甘 1、秦明泽 1、吴婷婷*、赵孟远、沈燕生、周宇、苏悦、刘云航、郭美梅、李永峰、赵洪远 * 河南科技学院机电工程学院先进材料与电化学技术研究中心,新乡 453003,中国 * 电子邮件:wtingtingwu@163.com (T. Wu),hongyuanzhao@126.com (H. Zhao) 收到:2022 年 3 月 8 日/接受:2022 年 3 月 28 日/发表:2022 年 4 月 5 日 我们提出了一种 Si 掺杂和八面体形貌的共同改性策略来提高 LiMn2O4 的电化学性能。以Mn3O4八面体为锰前驱体,SiO2纳米粒子为硅掺杂剂,采用高温固相法制备了Si掺杂的LiMn2O4样品(LiSi0.05Mn1.95O4八面体)。XRD和SEM表征结果表明,Si4+离子的引入对LiMn2O4固有的尖晶石结构没有产生实质性影响,LiSi0.05Mn1.95O4八面体呈现出相对均匀的粒径分布。在1.0C循环下,LiSi0.05Mn1.95O4八面体比未掺杂的LiMn2O4表现出更高的初始可逆容量。经过 100 次循环后,LiSi 0.05 Mn 1.95 O 4 八面体表现出更好的循环稳定性,容量保持率高达 94.7%。此外,LiSi 0.05 Mn 1.95 O 4 八面体表现出良好的倍率性能和高温循环性能。如此好的电化学性能与 Si 掺杂和八面体形貌的协同改性有很大关系。关键词:LiMn 2 O 4 ;硅掺杂;八面体形貌;Mn 3 O 4 八面体;电化学性能 1. 引言