仿射配准在全面的医学图像配准流程中不可或缺。然而,只有少数研究关注快速而鲁棒的仿射配准算法。这些研究中大多数利用卷积神经网络(CNN)来学习联合仿射和非参数配准,而对仿射子网络的独立性能探索较少。此外,现有的基于 CNN 的仿射配准方法要么关注局部错位,要么关注输入的全局方向和位置来预测仿射变换矩阵,这些方法对空间初始化很敏感,并且除了训练数据集之外表现出有限的通用性。在本文中,我们提出了一种快速而鲁棒的基于学习的算法,即粗到精视觉变换器(C2FViT),用于 3D 仿射医学图像配准。我们的方法自然地利用了卷积视觉变换器的全局连通性和局部性以及多分辨率策略来学习全局仿射配准。我们对 3D 脑图谱配准和模板匹配归一化方法进行了评估。综合结果表明,我们的方法在配准精度、稳健性和通用性方面优于现有的基于 CNN 的仿射配准方法,同时保留了基于学习的方法的运行时优势。源代码可在 https://github.com/cwmok/C2FViT 上找到。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
由于古老的起源,在出土的甲骨文骨铭文(OBI)中有许多不可或缺的字符,这使伟大的challenges带来了认可和研究。近年来,图像介绍技术取得了显着的进步。但是,这些模型无法适应OBI的唯一字体形状和复杂的文本背景。为了应对这些上述挑战,我们提出了一种使用生成的对抗网络(GAN)恢复受损的OBI的两阶段方法,该方法结合了双重歧视者结构,以捕获全球和局部图像。为了准确恢复图像结构和细节,提出了空间注意机制和新型损失函数。通过将现有OBI和各种蒙版的清晰副本喂入网络中,它可以学会为缺失区域生成内容。实验结果揭示了我们提出的方法完成OBI的有效性。
事件驱动的图像去模糊是一种创新方法,涉及输入从事件相机获取的事件以及模糊帧以促进去模糊过程。与传统相机不同,事件驱动成像中的事件相机表现出低延迟特性并且不受运动模糊的影响,从而显著提高了图像去模糊的效果。在本文中,我们提出了一种开创性的基于事件的由粗到细的图像去模糊网络CFFNet。与现有的去模糊方法相比,我们的方法结合了事件数据,从单个帧生成多个粗帧,然后进一步将它们细化为清晰的图像。我们引入了一个事件图像融合块(EIFB)来粗融合事件和图像,在不同的时间点生成粗帧。此外,我们提出了一个双向帧融合块(BFFB)来对粗帧进行精细融合。CFFNet 通过从粗到细的全面融合过程有效地利用了事件数据的时空信息。在 GoPro 和 REBlur 数据集上的实验结果表明,我们的方法在图像去模糊任务中达到了最先进的性能。
自我监督的单眼深度估计(DE)是一种学习深度的方法,没有昂贵的深度地面真理。但是,它经常在移动物体上挣扎,这些物体违反了训练期间的静态场景假设。为了结束这个问题,我们介绍了一个粗到最新的训练策略,该策略利用了地面与先验接触的地面,该期望是在户外场景中大多数移动物体在地面上造成的。在粗糙的训练阶段,我们将动态类中的对象排除在再投入损失计算中,以避免深度学习不准确。为了对物体的深度进行精确的监督,我们提出了一种新颖的接地式差异平滑度损失(GDS-loss),该损失(GDS-loss)鼓励DE网络将物体的深度与其接地接触点保持一致。随后,在精细的训练阶段,我们完善了DE网络,以了解重新投影损失中对象的详细深度,同时通过使用基于成本量的加权因素利用我们的正则化损失来确保对移动对象区域的准确DE。我们的整体粗表表训练策略可以轻松地与无需修改的方法集成,从而显着提高了挑战性的城市景观和KITTI数据集的DE性能,尤其是在移动对象区域中。
摘要。全脑分割是将整个脑体积划分为解剖标记的感兴趣区域 (ROI),是脑图像分析中的关键步骤。传统方法通常依赖于复杂的管道,这些管道虽然准确,但由于其复杂性而耗时且需要专业知识。或者,端到端深度学习方法提供快速的全脑分割,但通常会由于忽略几何特征而牺牲准确性。在本文中,我们提出了一种新颖的框架,将以前由复杂的基于表面的管道使用但被基于体积的方法忽略的关键曲率特征集成到深度神经网络中,从而实现高精度和高效率。具体而言,我们首先训练一个粗略的解剖分割模型,重点关注高对比度组织类型,即白质 (WM)、灰质 (GM) 和皮层下区域。接下来,我们使用 WM/GM 接口重建皮质表面,并计算表面上每个顶点的曲率特征。然后将这些曲率特征映射回图像空间,在那里它们与强度特征相结合以训练更精细的皮质分割模型。我们还简化了皮质表面重建和曲率计算的过程,从而提高了框架的整体效率。此外,我们的框架非常灵活,可以将任何神经网络作为其主干。它可以作为即插即用组件来增强任何分割网络的全脑分割结果。在公共 Mindboggle-101 数据集上的实验结果表明,与各种深度学习方法相比,分割性能有所提高,速度相当。
摘要。可变形图像配准是医学图像分析中的关键步骤,用于找到一对固定图像和运动图像之间的非线性空间变换。基于卷积神经网络 (CNN) 的深度配准方法已被广泛使用,因为它们可以快速、端到端地执行图像配准。然而,这些方法通常对具有较大变形的图像对性能有限。最近,迭代深度配准方法已被用来缓解这一限制,其中变换以由粗到细的方式迭代学习。然而,迭代方法不可避免地延长了配准运行时间,并且倾向于在每次迭代中学习单独的图像特征,这阻碍了利用这些特征来促进以后的迭代配准。在本研究中,我们提出了一种用于可变形图像配准的非迭代由粗到细配准网络 (NICE-Net)。在 NICE-Net 中,我们提出了:(i) 单次深度累积学习 (SDCL) 解码器,可以在网络的单次(迭代)中累积学习从粗到细的转换;(ii) 选择性传播特征学习 (SFL) 编码器,可以学习整个从粗到细配准过程的常见图像特征并根据需要选择性传播这些特征。在 3D 脑磁共振成像 (MRI) 的六个公共数据集上进行的大量实验表明,我们提出的 NICE-Net 可以胜过最先进的迭代深度配准方法,而只需要与非迭代方法类似的运行时间。