由于古老的起源,在出土的甲骨文骨铭文(OBI)中有许多不可或缺的字符,这使伟大的challenges带来了认可和研究。近年来,图像介绍技术取得了显着的进步。但是,这些模型无法适应OBI的唯一字体形状和复杂的文本背景。为了应对这些上述挑战,我们提出了一种使用生成的对抗网络(GAN)恢复受损的OBI的两阶段方法,该方法结合了双重歧视者结构,以捕获全球和局部图像。为了准确恢复图像结构和细节,提出了空间注意机制和新型损失函数。通过将现有OBI和各种蒙版的清晰副本喂入网络中,它可以学会为缺失区域生成内容。实验结果揭示了我们提出的方法完成OBI的有效性。
摘要 - 由于它们的高时间分辨率,对运动模糊的弹性提高以及非常稀疏的输出,事件摄像头已被证明是低延迟和低频带特征特征跟踪的理想选择,即使在具有挑战性的情况下也是如此。现有的事件摄像机的功能跟踪方法是手工制作的或源自第一原理,但需要广泛的参数调整,对噪声敏感,并且由于未建模的效果而不会概括到不同方案。为了解决这些缺陷,我们介绍了第一个针对事件摄像机的数据驱动的功能跟踪器,该功能摄像机利用低延迟事件来跟踪在强度框架中检测到的功能。我们通过新型的框架注意模块实现了强大的性能,该模块在特征轨道上共享信息。我们的跟踪器旨在以两种不同的配置进行操作:仅与事件或结合事件和帧的混合模式。混合模型提供了两个设置:一个对齐配置,其中事件和框架相机共享相同的视点,以及一个混合立体声配置,其中事件摄像头和标准摄像头并排放置。这种并排布置特别有价值,因为它为每个功能轨道提供了深度信息,从而增强了其在视觉探光和同时定位和映射等应用程序中的效用。
摘要。可变形图像配准是医学图像分析中的关键步骤,用于找到一对固定图像和运动图像之间的非线性空间变换。基于卷积神经网络 (CNN) 的深度配准方法已被广泛使用,因为它们可以快速、端到端地执行图像配准。然而,这些方法通常对具有较大变形的图像对性能有限。最近,迭代深度配准方法已被用来缓解这一限制,其中变换以由粗到细的方式迭代学习。然而,迭代方法不可避免地延长了配准运行时间,并且倾向于在每次迭代中学习单独的图像特征,这阻碍了利用这些特征来促进以后的迭代配准。在本研究中,我们提出了一种用于可变形图像配准的非迭代由粗到细配准网络 (NICE-Net)。在 NICE-Net 中,我们提出了:(i) 单次深度累积学习 (SDCL) 解码器,可以在网络的单次(迭代)中累积学习从粗到细的转换;(ii) 选择性传播特征学习 (SFL) 编码器,可以学习整个从粗到细配准过程的常见图像特征并根据需要选择性传播这些特征。在 3D 脑磁共振成像 (MRI) 的六个公共数据集上进行的大量实验表明,我们提出的 NICE-Net 可以胜过最先进的迭代深度配准方法,而只需要与非迭代方法类似的运行时间。
时间的操作方法是相对论理论的基石,正如适当的时间概念所证明的那样。在标准量子力学中,时间是外部阶段。最近,已经尝试了许多尝试在关系框架内延长适当时间的量子力学概念。在这里,我们使用类似的想法与相对论的质量能量等效性一起研究具有内部时钟系统的加速量量子粒子。我们表明,从粒子的内部时钟的角度来看,随之而来的演变是非热的。此结果不依赖于时钟的特定影响。是一个特别的结果,我们证明了两个重力相互作用粒子的有效哈密顿素体从任何一个粒子的时钟的角度都是非热的。
从大脑活动中重建复杂而动态的视觉感知仍然是机器学习应用于神经科学的一大挑战。在这里,我们提出了一种新方法,用于从非常大的单参与者功能性磁共振成像数据中重建自然图像和视频,该方法利用了图像到图像转换网络的最新成功。这是通过利用从整个视觉系统的视网膜主题映射中获得的空间信息来实现的。更具体地说,我们首先根据其对应的感受野位置确定特定感兴趣区域中的每个体素在视野中代表什么位置。然后,将视野上大脑活动的 2D 图像表示传递给完全卷积的图像到图像网络,该网络经过训练以使用带有对抗性正则化的 VGG 特征损失恢复原始刺激。在我们的实验中,我们表明我们的方法比现有的视频重建技术有了显着的改进。
头皮脑电图是头皮电位与时间的关系图,因此,由于电极在头皮上的位置,它可以捕获空间信息,以及脑电波变化的时间信息。在本文中,我们提出了一种新方法,通过将信号合并到稀疏的时空框架中来组合表示空间和时间信息,以便计算机视觉领域的深度学习算法可以轻松地对其进行处理。在脑电图情绪识别设置中,还定义了模型对测试数据的熟悉度,并引入了一种数据拆分形式,使得模型必须在熟悉度最低的集合上执行。在 DEAP 数据集上训练 CapsNet 架构以执行跨主题二元分类任务,并分析了使用贝叶斯优化对超参数的调整。该模型报告称,对于 LOO 主题,最佳情况准确率为 0.85396,平均情况准确率为 0.57165,对于未见主题-未见记录分类,最佳情况准确率为 1.0,平均情况准确率为 0.51071,这与其他文献报告的结果相当。
可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
总结系统生物学中的一个主要挑战是了解基因调节网络(GRN)中的各种基因如何共同执行其功能和控制网络动态。在具有数百个基因和边缘的大型网络的情况下,该任务变得极为难以解决,其中许多具有冗余的调节作用和功能。现有的模型减少方法通常需要对动态系统及其响应动力学参数的详细数学描述,而动力学系统通常不可用。在这里,我们提出了一种用于使用基于合奏的数学建模,降低维度降低和通过Markov Chain Monte Monte Carlo方法优化基因的数据驱动的大grn,名为Sacograci的粗粒度大GRN,称为Sacograci。sacograci需要网络拓扑作为唯一的输入,并且可以抵抗GRN中的错误。我们通过合成,基于文学和生物毒素的GRN进行基准并证明其用法。我们希望Sacograci能够增强我们建模复杂生物系统基因调节的能力。
摘要 - 公制占用图广泛用于机器人导航系统中。但是,当机器人被部署在看不见的环境中时,构建准确的度量图会耗时。可以使用粗图直接在以前看不见的环境中直接导航?在这项工作中,我们提出了粗大地图导航器(CMN),这是一个可以使用不同的粗图在看不见的环境中执行机器人导航的导航框架。为此,CMN解决了两个挑战:(1)新颖而现实的视觉观察; (2)粗图上的误差和错位。为了解决在看不见的环境中的新型视觉观测,CMN了解了一个深刻的感知模型,该模型将视觉输入从各个像素空间映射到本地占用网格空间。为了解决粗图上的误差和未对准,CMN使用预测的局部占用网格作为观测值扩展了贝叶斯过滤器,并直接在粗图上保持信念。使用最新信念,CMN提取了全球启发式向量,该向量指导计划者找到本地导航行动。经验结果表明,CMN在看不见的环境中实现了高导航的成功率,明显优于基准,并且对不同的粗图形具有鲁棒性。