神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。
事件驱动的图像去模糊是一种创新方法,涉及输入从事件相机获取的事件以及模糊帧以促进去模糊过程。与传统相机不同,事件驱动成像中的事件相机表现出低延迟特性并且不受运动模糊的影响,从而显著提高了图像去模糊的效果。在本文中,我们提出了一种开创性的基于事件的由粗到细的图像去模糊网络CFFNet。与现有的去模糊方法相比,我们的方法结合了事件数据,从单个帧生成多个粗帧,然后进一步将它们细化为清晰的图像。我们引入了一个事件图像融合块(EIFB)来粗融合事件和图像,在不同的时间点生成粗帧。此外,我们提出了一个双向帧融合块(BFFB)来对粗帧进行精细融合。CFFNet 通过从粗到细的全面融合过程有效地利用了事件数据的时空信息。在 GoPro 和 REBlur 数据集上的实验结果表明,我们的方法在图像去模糊任务中达到了最先进的性能。
a)投标保证金:中标人未按照《招标与合同指南》的规定订立合同的,视为中标人未能订立合同,并处以相当于中标价5/100的罚款。 (一)合同押金:承包商如未能履行合同义务,将被收取至少合同金额10%的罚款。 (5)招标方式A、根据招标文件确定中标人,在估算价格范围内提供最低价格的投标人为中标人。详细信息请参阅说明中。 此外,任何未包括以下明细或未包括总金额的出价都将被视为无效。 (a)直接人工费 (b)法定福利费 (c)运输费 (d)一般管理费 中标价为(a)中标文件中记载的金额加上该金额的 10% 的金额(如果该金额有 1 日元以下的小数部分,则小数部分四舍五入)。因此,无论您是消费税应纳税企业还是免税企业,您都应在投标文件中记载相当于合同预估金额 110/100 的金额。 (6)无效投标 a)不具备第2项规定的参加竞标所需资格的人员投标的; b)通过电报或电话投标的; c)难以确定投标金额和投标人名称的; d)投标人作出的承诺是虚假的或者出现违反承诺的情况的。 (7)合同等的准备 确定中标人后,中标人应及时准备“驻军用标准合同(要求)”格式。 适用条款: “服务合同条款” “有关串通等非法活动的特别条款” “有关排除有组织犯罪的特别条款” “有关单价合同的特别条款” 签约方(甲方)为日本陆上自卫队相浦警备队第363计事队司令官,其为签约代表官。
摘要 随着封装的微型化和异质集成化,人们一直致力于开发低温焊料。Sn-58Bi 共晶焊料的熔点为 138°C,是一种颇具吸引力的替代方案。由于 Sn-Bi 焊料的熔点较低,即使在室温下也可能发生 Bi 粗化。本文观察了室温储存过程中 Sn-58Bi 接头的微观结构演变。室温老化导致焊料基体中 Bi 相的溶解和粗化,尤其是在初生 Sn 相和 Sn-Bi 枝晶中。通过纳米压痕测量了单个富 Sn 相和富 Bi 相的力学性能。结果表明,由于溶液强化,老化焊点中富 Sn 相比富 Bi 相具有更高的杨氏模量和硬度。Bi 相比 Sn 更柔顺,硬度更低。
摘要使用琼脂二聚体扩散方法研究了香料果皮与壳聚糖混合在抑制四种微生物的生长中,抑制四种微生物的生长,抑制四种微生物的生长。发现与壳聚糖混合的石榴果皮的粗提取物有效地抑制了所有测试过的微生物的生长。在另一项研究中,将黄瓜水果(SpeedMax品种)涂有1)壳聚糖,2)与壳聚糖混合的石榴果皮中的粗提取物,并与对照组(浸入水中)进行比较。黄瓜在7°C下储存,并每7天记录每7天的黄瓜的质量归因。通过测量黄瓜水果的体重减轻,成熟和变质来记录实验结果。发现与壳聚糖混合(CHI + PPE,2.59±0.01)混合的粗化石榴果皮提取物涂料对体重损失百分比没有显着影响,与壳聚糖(CHI,2.58±0.01)相比,但与对照组的涂层有显着差异(2.93±0.001)。然而,用粗化石榴果皮提取物与壳聚糖(CHI + PPE)混合的涂料黄瓜倾向于增加成熟的量比壳聚糖和对照组涂层的成熟量更大(p <0.05)。与对照组相比,仅壳壳涂层就无法延迟黄瓜水果的变质。然而,发现涂有粗化石榴果皮提取物与壳聚糖混合的黄瓜水果比用壳聚糖和对照涂层的壳聚糖更宠坏(p <0.05)。关键字:黄瓜,石榴果皮,壳聚糖,涂料
Martini 粗粒度力场 Martini 3 的最新重新参数化提高了该模型在预测分子动力学模拟中的分子堆积和相互作用方面的准确性。在这里,我们描述了如何在 Martini 3 框架内精确参数化小分子,并提供了一个经过验证的小分子模型数据库。我们特别关注脂肪族和芳香族环状结构的描述,这些结构在溶剂和药物等小分子或蛋白质和合成聚合物等大分子的构成块中普遍存在。在 Martini 3 中,环状结构由使用更高分辨率粗粒度颗粒(小颗粒和微小颗粒)的模型描述。因此,本数据库构成了校准新 Martini 3 小颗粒和微小颗粒尺寸的基石之一。这些模型表现出出色的分配行为和溶剂性能。还捕获了不同本体相之间的可混溶性趋势,从而完成了参数化过程中考虑的一组热力学性质。我们还展示了新的珠子尺寸如何能够很好地表示分子体积,从而转化为更好的结构特性,例如堆叠距离。我们进一步介绍了设计策略,以构建复杂度更高的小分子的 Martini 3 模型。
摘要:由于表示所有原子的计算复杂性,经典分子动力学 (MD) 模拟在原子分辨率(细粒度级别,FG)下对大多数生物分子过程的应用仍然有限。这个问题在具有非常大构象空间的基于蛋白质的生物分子系统存在的情况下被放大,并且具有细粒度分辨率的 MD 模拟具有探索该空间的缓慢动态。文献中当前的可转移粗粒度 (CG) 力场要么仅限于以隐式形式编码环境的肽,要么无法捕获从氨基酸一级序列到二级/三级肽结构的转变。在这项工作中,我们提出了一种可转移的 CG 力场,它明确表示环境,以便对蛋白质进行精确模拟。力场由一组代表不同化学基团的伪原子组成,这些化学基团可以连接/关联在一起以创建不同的生物分子系统。这保留了力场在多种环境和模拟条件中的可转移性。我们添加了可以响应环境异质性/波动的电子极化,并将其与蛋白质的结构转变耦合。非键合相互作用通过基于物理的特征(例如通过热力学计算确定的溶剂化和分配自由能)进行参数化,并与实验和/或原子模拟相匹配。键合势是从非冗余蛋白质结构数据库中的相应分布推断出来的。我们通过模拟经过充分研究的水蛋白系统来验证 CG 模型,这些系统具有特定的蛋白质折叠类型 Trp-cage、Trpzip4、villin、WW-domain 和 β - α - β 。我们还探索了力场在研究 A β 16-22 肽的水聚集中的应用。■ 简介蛋白质分子的生理功能与其相关结构和动力学密切相关。1、2
由于古老的起源,在出土的甲骨文骨铭文(OBI)中有许多不可或缺的字符,这使伟大的challenges带来了认可和研究。近年来,图像介绍技术取得了显着的进步。但是,这些模型无法适应OBI的唯一字体形状和复杂的文本背景。为了应对这些上述挑战,我们提出了一种使用生成的对抗网络(GAN)恢复受损的OBI的两阶段方法,该方法结合了双重歧视者结构,以捕获全球和局部图像。为了准确恢复图像结构和细节,提出了空间注意机制和新型损失函数。通过将现有OBI和各种蒙版的清晰副本喂入网络中,它可以学会为缺失区域生成内容。实验结果揭示了我们提出的方法完成OBI的有效性。
3实现航空技术目标。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.11 3.1航空技术主题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.13保护航空旅行者和公众(目标2.1)。。。。。。。。。。。。。。。。。。。。.14保护环境(目标2.2)。。。。。。。。。。。。。。。。。。。。。。。。。。。。.16提高容量和流动性(目标2.3)。。。。。。。。。。。。。。。。。。。。。。。.18国家安全伙伴关系(目标3.1)。。。。。。。。。。。。。。。。。。。。。.20探索革命航空概念(目标10.5)。。。。。。。。。。。.22 3.2太空启动计划主题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.25国家安全伙伴关系(目标3.1)。。。。。。。。。。。。。。。。。。。。。.26保证国际空间站访问(目标8.1)。。。。。。。。。。。。。。.28任务安全和可靠性(目标8.2)。。。。。。。。。。。。。。。。。。。。。。。。.30 3.3任务和科学测量技术主题。。。。。。。。。。。。。。。。。.33任务风险分析(目标10.1)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.34科学和工程驱动的架构和技术(目标10.2)。。。。。。。。。。。。。。。。。。。。。。。。。。。.36 3.4创新技术转移伙伴关系主题。。。。。。。。。。。。。。。。。。。.39向社会扩大利益(目标3.3)。。。。。。。。。。。。。。。。。。。。。。。。。.40 NASA技术的新来源(目标10.3)。。。。。。。。。。。。。。。。.42 3.5企业对代理教育和推广目标的贡献。。。。。。。.45支持NASA教育目标(目标6)。。。。。。。。。。。。。。。。。。。。。。。.45支持公共外展目标(目标7.1)。。。。。。。。。。。。。。。。。.48