蛋白XPA在核苷酸切除修复途径中起关键作用。最近的实验工作表明,XPA的功能动力学涉及沿DNA的一维扩散以搜索损伤位点。在这里,我们使用各种盐浓度的广泛的粗粒分子模拟来研究所涉及的动力学过程。结果表明扩散机制的盐浓度依赖性很强。在低盐浓度下,与旋转耦合的一维扩散是主要机制。在高盐浓度下,三维机制的扩散变得更有可能。在较广泛的盐浓度下,涉及DNA结合的残基是相似的,并且沿DNA显示的XPA的一维扩散是降低功能。此亚延伸功能暂定归因于XPA – DNA相互作用的各种强度。另外,我们表明,与DNA的结合和盐浓度升高倾向于拉伸XPA的构象,从而增加了位点的暴露范围,以结合其他修复蛋白。
我们开发了一种基于耗散粒子动力学(DPD)的计算方法,该方法将溶剂的水动力相互作用引入了溶质的粗粒模型,例如离子,分子或聚合物。dpd-solvent(DPDS)是一种完全非驻留方法,可以直接通过任何基于粒子的溶质模型以所需的溶剂粘度,可压缩性和溶质扩散率直接掺入流体动力学。溶质仅通过DPD恒温器与溶剂相互作用,这确保了溶质系统的平衡性能不受引入DPD溶剂的影响,而恒温器耦合强度则设定了所需的溶质扩散率。因此,DPD可以用作替代传统分子动力学恒温器,例如Nosé -Hoover和Langevin。我们证明了在聚合物动力学和通过纳米孔电流流动的情况下,DPD的适用性。该方法应广泛用作将流体动力相互作用引入现有的粗粒溶质和软材料模型的一种手段。
总结系统生物学中的一个主要挑战是了解基因调节网络(GRN)中的各种基因如何共同执行其功能和控制网络动态。在具有数百个基因和边缘的大型网络的情况下,该任务变得极为难以解决,其中许多具有冗余的调节作用和功能。现有的模型减少方法通常需要对动态系统及其响应动力学参数的详细数学描述,而动力学系统通常不可用。在这里,我们提出了一种用于使用基于合奏的数学建模,降低维度降低和通过Markov Chain Monte Monte Carlo方法优化基因的数据驱动的大grn,名为Sacograci的粗粒度大GRN,称为Sacograci。sacograci需要网络拓扑作为唯一的输入,并且可以抵抗GRN中的错误。我们通过合成,基于文学和生物毒素的GRN进行基准并证明其用法。我们希望Sacograci能够增强我们建模复杂生物系统基因调节的能力。
抽象动机:由于DNA测序的进步,现在常规地进行了环境微生物群落的分类学分析。确定这些群落在全球生物地球化学周期中的作用需要鉴定其代谢功能,例如氢氧化,还原和碳固定。这些功能可以直接从宏基因组学数据中推断出来,但是在许多环境应用中,MetabarCoding仍然是选择的方法。从元法编码数据及其整合到地球化学循环的粗粒表示中,代谢功能的重建仍然是当今有效的生物信息学问题。结果:我们开发了一条称为Tabigecy的管道,该管道利用分类学官员来预测构成生物地球化学周期的代谢功能。在第一个步骤中,Tabigecy使用该工具Esmecata从输入液位中预测共识蛋白质组。为了优化此过程,我们生成了一个预先计算的数据库,其中包含来自Uniprot的2,404个分类单元的信息。使用BigeCyhmm搜索了共有的蛋白质组织,BigeCyhmm是一个新开发的Python软件包,依靠隐藏的Markov模型来识别参与生物地球化学周期代谢功能的关键酶。然后将代谢功能投射到周期的粗粒表示上。我们将塔博基(Tabigecy)应用于两个盐洞数据集,并通过对样品进行的微生物活性和水力化学测量结果验证了其预测。结果突出了研究微生物群落对地理化学过程的影响的方法。关键字:微生物群落,生物地球化学周期,代谢功能,分类学官员
1分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系91分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系9
摘要。在Exascale计算时代,具有前所未有的计算能力的机器可用。使这些大规模平行的机器有效地使用了数百万个核心,提出了一个新的挑战。需要多级和多维并行性来满足这种挑战。粗粒分量并发性提供了一个差异的并行性维度,该维度通常使用了通常使用的并行化方法,例如域分解和循环级别的共享内存方法。虽然这些主教化方法是数据并行技术,并且它们分解了数据空间,但组件并发是一种函数并行技术,并且分解了算法MIC空间。并行性的额外维度使我们能够将可扩展性扩展到由已建立的并行化技术设置的限制之外。,当通过添加组件(例如生物地球化学或冰盖模型)增加模型复杂性时,它还提供了一种方法来提高性能(通过使用更多的计算功率)。此外,货币允许每个组件在不同的硬件上运行,从而利用异质硬件配置的使用。在这项工作中,我们研究了组件并发的特征,并在一般文本中分析其行为。分析表明,组件并发构成“并行工作负载”,从而在某些条件下提高了可扩展性。这些通用考虑是
(i) 细粒度 SIMD:这些实际上是处理实际上由大得多的组件组成的小得多的组件的详细描述。 (ii) 粗粒度 SIMD:这些系统由较少的组件组成,这些组件显然比原始组件多,但比细粒度 SIMD 小得多,但组件的大小比系统的细粒度子组件大得多(高/多)。细粒度和粗粒度 SIMD 架构之间的差异:
拉斯维加斯——土地管理局发布了一份最终环境影响声明,以修订 1998 年拉斯维加斯资源管理计划,该计划针对克拉克县帕朗附近约 2,469 英亩公共土地上拟建的 Rough Hat Clark 太阳能项目。如果获得批准,该项目可产生高达 400 兆瓦的清洁能源,并为输电网增加高达 700 兆瓦的电池储能。Candela Renewables, LLC 提议建造、运营、维护并最终停用交流太阳能光伏发电设施、电池储能系统、发电机输电线和相关设施。“我们在公开范围确定和发布环境影响声明草案期间收到了公众的意见,”拉斯维加斯现场经理 Bruce Sillitoe 表示。“这些意见有助于 BLM 制定拟议项目的最终环境影响声明。”美国环境保护署将于 2024 年 11 月 1 日在《联邦公报》上发布一份可用性通知,开始对拟议修正案进行为期 30 天的抗议期,该抗议期于 2024 年 12 月 2 日结束。那些参与规划过程并可能受到拟议计划不利影响的人士可以通过 BLM 国家 NEPA 登记册 (首选) 以电子方式提交计划抗议,或将其递送至:BLM 主任,收件人:抗议协调员 (HQ210),丹佛联邦中心,40 号楼 (W-4 门),科罗拉多州莱克伍德 80215。请访问 BLM 提交计划抗议页面获取说明。拜登-哈里斯政府已批准在公共土地上开展 43 个可再生能源项目(10 个太阳能项目、14 个地热项目、1 个风能项目和 18 个风力发电项目),并超过了到 2025 年允许 25 千兆瓦可再生能源的目标。土地管理局已批准在公共土地上开展清洁能源项目,总发电量超过 32 千兆瓦,足以为 1500 多万户家庭供电。今年,土地管理局还发布了最终的可再生能源规则,该规则将降低消费者能源成本以及开发太阳能和风能项目的成本,改善项目申请