机器,磁共振成像(MRI)和核磁共振(NMR)。我们报告了由两个矩形Y-BA-CU-O(YBCO)散装单晶粒组成的大容量组件的脉冲场磁化(PFM)的系统研究,并在各种温度下紧邻。由数值分析支持的磁通量密度的动态变化的测量结果表明,脉冲场兴起的诱导筛选电流可能会大大增强连接处的区域的磁通密度,从而导致不均匀的通量渗透,并增加了该区域磁通量的增加。场和电流之间的这种耦合可促进磁通量穿透,并将峰值捕获的场从3.01 t提高到散装单晶粒的3.01 t到30 K时的大容量组件的3.11 t,从而将磁化效率从80%提高到90%。通过使用两步的多脉冲PFM工艺,单个散装单粒和散装组件的峰值捕获场分别为单个散装单粒和散装组件进一步增强至3.39 t和3.31 t。关键字:通量跳跃,高温超导体,磁通量繁殖,捕获的场磁铁1。简介
本报告是作为美国政府机构赞助的工作报告而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
在亲水性聚合物基质中配制低水溶性小分子药物,也称为无定形固体分散体 (ASD),是实现有效药物输送和生物利用度的最常见方法之一。生产高性能 ASD 取决于各种因素,例如药物赋形剂基质的物理稳定性、其在溶解过程中与聚合物的相互作用以及药物在水性介质中的释放速率。通常,研究人员会进行大量的设计和实验迭代来实现这一目标。虽然可以从实验数据中得出关于药物释放行为的假设,但对基本机制的全面理解和对分子水平事件的洞察仍然难以实现。仅通过实验很难获得详细的药物/聚合物/水相互作用。因此,需要一种更有效的方法来指导为特定药物选择合适的赋形剂(包括聚合物)。
提出了一种高度加速的剪切疲劳测试方法,以测试长期的可靠性并揭示热cu e cu球键的粘结界面。该方法是对新的工业疲劳测试仪(BAMFIT)的适应,并且可以在没有复杂的标本制备的情况下进行。此方法诱导机械循环剪应力向Cu指甲发出,以引发疲劳性断裂直至升出,从而揭示了实际的粘合界面。这项研究比较了与粗粒和细粒铜和Al金属化粘合的Cu电线的抗疲劳性。疲劳实验伴随着纳米压痕测试,剪切测试和有限元分析。疲劳结果表明,粗粒状Cu垫(金属化)的CU键最佳,然后是在细粒度Cu上键的键,而Cu e Al Nailheads比Cu e Cu键早于十年。在测试之前退火样品会导致CU键和Cu e Al键的负载周期数量(N F)的量略有增加,而N F中Cu键的散射增加了。由于断裂概率曲线的变化,疲劳数据的计算出的耐力极限随着退火阶段的增加而减少。具有比较几分钟内粘结界面的疲劳行为的能力,此方法最适合在开发的早期阶段快速资格。
在部分 (I) 中,我们构建了 Martini 3 粗粒 (CG) 分子动力学 (MD) 模型来描述 CNC 的不同晶体结构(包括 I β /II/III I )。随后,我们研究了 COO − 修饰的 CNC I β 在 NaCl 水溶液中的分散和聚集特性,发现结果与实验观察结果一致。此外,基于为纤维素 I β /II 开发的拓扑结构,我们研究了纤维素晶体的再生过程。X 射线衍射 (XRD) 用于监测再生过程中的结构变化和微晶形成。XRD 结果表明再生纤维素晶体为纤维素 II,与实验测量结果一致。在部分 (II) 中,我们使用我们开发的 TW 模型探索了光在透明木材 (TW) 中的传播,即纤维素/PMMA 复合材料。这些模型是通过在 SEM 图像中识别纤维素纤维结构来构建的。我们采用了射线追踪,一种
摘要。在有丝分裂纺锤体中,微管在中期通过捕获键附着在动粒上,微管解聚力引起随机染色体振荡。我们研究了纺锤体模型中的协同随机微管动力学,该模型由一组平行微管组成,这些微管通过弹性接头附着在动粒上。我们包括微管的动态不稳定性以及弹性接头对微管和动粒的作用力。采用基于福克-普朗克方程的平均场方法,对外力作用于动粒的单侧模型进行分析求解。该解建立了微管集合的双稳态力-速度关系,与随机模拟一致。我们推导出双稳态的接头刚度和微管数的约束。单侧纺锤体模型的双稳态力-速度关系导致双侧模型中的振荡,这可以解释中期随机染色体振荡(方向不稳定性)。我们推导出中期染色体振荡的连接体刚度和微管数的约束。将极向微管通量纳入模型,我们可以解释实验观察到的极向通量速度高的细胞中染色体振荡的抑制。然而,在存在极向喷射力的情况下,染色体振荡持续存在,但幅度减小,姊妹动粒之间有相移。此外,极向喷射力是必要的,以使染色体在纺锤体赤道处对齐,并稳定两个动粒的交替振荡模式。最后,我们修改了模型,使得微管只能对动粒施加拉力,从而导致两个微管集合之间发生拉锯战。然后,到达动粒后诱发的微管灾难是刺激振荡的必要条件。该模型可以定量再现 PtK1 细胞中动粒振荡的实验结果。
摘要 随着封装的微型化和异质集成化,人们一直致力于开发低温焊料。Sn-58Bi 共晶焊料的熔点为 138°C,是一种颇具吸引力的替代方案。由于 Sn-Bi 焊料的熔点较低,即使在室温下也可能发生 Bi 粗化。本文观察了室温储存过程中 Sn-58Bi 接头的微观结构演变。室温老化导致焊料基体中 Bi 相的溶解和粗化,尤其是在初生 Sn 相和 Sn-Bi 枝晶中。通过纳米压痕测量了单个富 Sn 相和富 Bi 相的力学性能。结果表明,由于溶液强化,老化焊点中富 Sn 相比富 Bi 相具有更高的杨氏模量和硬度。Bi 相比 Sn 更柔顺,硬度更低。
3 天前 — 来自大臣官房卫生监察长、防卫政策局局长、防卫采购局局长或陆上自卫队参谋长...... ・与规格相关的内容。 补给队米食课负责人:佐竹(内线 336)。 1. 第 3 页。 物品明细等......
关键词 路径规划,粒子群优化,广义 PSO,光学避障,无人机,无人机编队。摘要 本文研究了多旋翼无人机(UAV)在编队形状中协作检查周围表面的路径规划技术问题。我们首先将问题描述为在复杂空间中规划编队质心路径的联合目标成本。然后提出了一种路径规划算法,称为广义粒子群优化算法,用于在避开障碍物并确保飞行任务要求的同时构建最佳的可飞行路径。然后结合路径开发方案为每架无人机生成相关路径以保持其在编队配置中的位置。进行了仿真、比较和实验以验证所提出的方法。结果表明,使用 GEPSO 的路径规划算法是可行的。缩写
摘要近年来,纳米技术因其对科学和生活的各个领域(包括生物学和生物医学)的广泛影响而引起了研究人员的大大关注。纳米级的纳米颗粒的独特物理,化学,光学,电子和磁性特性导致了有关其合成的巨大努力。通常通过各种物理和化学方法合成它们;但是,其中许多方法是能量密集型的,导致产生具有污染特性的有毒副产品。因此,环保方法的发现和开发,例如细菌对纳米颗粒的生物合成,引起了人们的注意。在这项研究中,使用微生物菌株的微生物菌株的微生物培养物合成了氧化锌纳米颗粒。OSNP13。通过包括UV-VIS,DLS和XRD在内的结构分析来表征合成的纳米颗粒。结果表明,产生的氧化锌纳米颗粒的平均大小为59.16 nm。此外,还评估了合成纳米颗粒的抗菌活性。将大肠杆菌和金黄色葡萄球菌的氧化锌纳米颗粒的MIC计算为500μg/ml。这项研究中产生的氧化铜纳米颗粒表现出显着的抗菌特性,可以被视为合适的候选物作为抗菌剂。
