资料来源:https://towardsdatascience.com/machine-learning-methods-to-aid-in-coronavirus-response-70df8bfc7861、https://bdtechtalks.com/2020/03/09/artificial-intelligence-covid-19-coronavirus/、https://news.yahoo.co.jp/byline/kazuhirotaira/20200326-00169744/
摘要。在Exascale计算时代,具有前所未有的计算能力的机器可用。使这些大规模平行的机器有效地使用了数百万个核心,提出了一个新的挑战。需要多级和多维并行性来满足这种挑战。粗粒分量并发性提供了一个差异的并行性维度,该维度通常使用了通常使用的并行化方法,例如域分解和循环级别的共享内存方法。虽然这些主教化方法是数据并行技术,并且它们分解了数据空间,但组件并发是一种函数并行技术,并且分解了算法MIC空间。并行性的额外维度使我们能够将可扩展性扩展到由已建立的并行化技术设置的限制之外。,当通过添加组件(例如生物地球化学或冰盖模型)增加模型复杂性时,它还提供了一种方法来提高性能(通过使用更多的计算功率)。此外,货币允许每个组件在不同的硬件上运行,从而利用异质硬件配置的使用。在这项工作中,我们研究了组件并发的特征,并在一般文本中分析其行为。分析表明,组件并发构成“并行工作负载”,从而在某些条件下提高了可扩展性。这些通用考虑是
本报告是作为美国政府机构赞助的工作报告而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要 随着封装的微型化和异质集成化,人们一直致力于开发低温焊料。Sn-58Bi 共晶焊料的熔点为 138°C,是一种颇具吸引力的替代方案。由于 Sn-Bi 焊料的熔点较低,即使在室温下也可能发生 Bi 粗化。本文观察了室温储存过程中 Sn-58Bi 接头的微观结构演变。室温老化导致焊料基体中 Bi 相的溶解和粗化,尤其是在初生 Sn 相和 Sn-Bi 枝晶中。通过纳米压痕测量了单个富 Sn 相和富 Bi 相的力学性能。结果表明,由于溶液强化,老化焊点中富 Sn 相比富 Bi 相具有更高的杨氏模量和硬度。Bi 相比 Sn 更柔顺,硬度更低。
图 3 ReRAM 特性的电极依赖性:(a) 50×50 μm 2 ,(b) 200×200 μm 2 。 5.结论我们利用 TiO x 作为电阻变化层制作了 ReRAM,并评估了其特性。在本次创建的条件下,没有观察到复位操作。这被认为是因为在复位操作过程中,由于氧气的释放,灯丝没有断裂。比较电极尺寸,50×50 μm2 的较小元件与 200×200 μm2 的元件相比,可获得更优异的特性。这被认为表明了氧化退火过程中的尺寸依赖性。 6.参考文献 [1] A. Hardtdegen 等,IEEE Transactions on Electron Devices,第 65 卷,第 8 期,第 3229-3236 页 (2018) [2] Takeo Ninomiya,基于氧化物材料设计和可靠性建模的电阻式存储器量产,名古屋大学研究生院博士论文 (2016) [3] D.Carta 等,ACS Appl. Mater. Interfaces,第 19605-19611 页 (2016) [4] D. Acharyya 等,微电子可靠性。54,第 541-560 页 (2014)。
Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
(i) 细粒度 SIMD:这些实际上是处理实际上由大得多的组件组成的小得多的组件的详细描述。 (ii) 粗粒度 SIMD:这些系统由较少的组件组成,这些组件显然比原始组件多,但比细粒度 SIMD 小得多,但组件的大小比系统的细粒度子组件大得多(高/多)。细粒度和粗粒度 SIMD 架构之间的差异:
拉斯维加斯——土地管理局发布了一份最终环境影响声明,以修订 1998 年拉斯维加斯资源管理计划,该计划针对克拉克县帕朗附近约 2,469 英亩公共土地上拟建的 Rough Hat Clark 太阳能项目。如果获得批准,该项目可产生高达 400 兆瓦的清洁能源,并为输电网增加高达 700 兆瓦的电池储能。Candela Renewables, LLC 提议建造、运营、维护并最终停用交流太阳能光伏发电设施、电池储能系统、发电机输电线和相关设施。“我们在公开范围确定和发布环境影响声明草案期间收到了公众的意见,”拉斯维加斯现场经理 Bruce Sillitoe 表示。“这些意见有助于 BLM 制定拟议项目的最终环境影响声明。”美国环境保护署将于 2024 年 11 月 1 日在《联邦公报》上发布一份可用性通知,开始对拟议修正案进行为期 30 天的抗议期,该抗议期于 2024 年 12 月 2 日结束。那些参与规划过程并可能受到拟议计划不利影响的人士可以通过 BLM 国家 NEPA 登记册 (首选) 以电子方式提交计划抗议,或将其递送至:BLM 主任,收件人:抗议协调员 (HQ210),丹佛联邦中心,40 号楼 (W-4 门),科罗拉多州莱克伍德 80215。请访问 BLM 提交计划抗议页面获取说明。拜登-哈里斯政府已批准在公共土地上开展 43 个可再生能源项目(10 个太阳能项目、14 个地热项目、1 个风能项目和 18 个风力发电项目),并超过了到 2025 年允许 25 千兆瓦可再生能源的目标。土地管理局已批准在公共土地上开展清洁能源项目,总发电量超过 32 千兆瓦,足以为 1500 多万户家庭供电。今年,土地管理局还发布了最终的可再生能源规则,该规则将降低消费者能源成本以及开发太阳能和风能项目的成本,改善项目申请