摘要。可变形图像配准是医学图像分析中的关键步骤,用于找到一对固定图像和运动图像之间的非线性空间变换。基于卷积神经网络 (CNN) 的深度配准方法已被广泛使用,因为它们可以快速、端到端地执行图像配准。然而,这些方法通常对具有较大变形的图像对性能有限。最近,迭代深度配准方法已被用来缓解这一限制,其中变换以由粗到细的方式迭代学习。然而,迭代方法不可避免地延长了配准运行时间,并且倾向于在每次迭代中学习单独的图像特征,这阻碍了利用这些特征来促进以后的迭代配准。在本研究中,我们提出了一种用于可变形图像配准的非迭代由粗到细配准网络 (NICE-Net)。在 NICE-Net 中,我们提出了:(i) 单次深度累积学习 (SDCL) 解码器,可以在网络的单次(迭代)中累积学习从粗到细的转换;(ii) 选择性传播特征学习 (SFL) 编码器,可以学习整个从粗到细配准过程的常见图像特征并根据需要选择性传播这些特征。在 3D 脑磁共振成像 (MRI) 的六个公共数据集上进行的大量实验表明,我们提出的 NICE-Net 可以胜过最先进的迭代深度配准方法,而只需要与非迭代方法类似的运行时间。
准确的工具跟踪对于计算机辅助干预的成功至关重要。以前的努力通常会严格地对工具轨迹进行建模,从而俯瞰外科手术程序的动态性质,尤其是跟踪诸如身体外和相机外视图之类的场景。在解决此限制时,新的CholectRack20数据集提供了详细的标签,以三个角度说明多个工具轨迹:(1)术中,(2)体内和(3)可见性,代表不同类型的工具轨迹时间。这些细粒标签可增强跟踪灵活性,但也提高了任务复杂性。由于高视觉相似性,尤其是在同一类别的工具中,遮挡或重新插入身体后的工具仍然具有挑战性。这项工作认识到工具操作员在区分工具轨道实例中的关键作用,尤其是属于同一工具类别的工具轨道实例。但是,在手术视频中未明确捕获操作员的信息。因此,我们提出了Surgitrack,这是一种利用Yolov7进行精确工具检测的新型深度学习方法,并采用了注意机制来对工具的起源方向进行建模,作为其操作员的代理,以重新识别工具。为了处理各种工具轨迹的观点,Surgitrack采用了协调的两分匹配图,最大程度地减少冲突并确保准确的工具身份关联。cholectrack20的实验结果证明了外科手术的有效性,优于实时推理能力的最先进方法和最先进的方法。这项工作为手术工具跟踪设定了新的标准,为在微创手术中提供了更适合适应性和精确的帮助。
可变形图像配准是医学图像分析的基本步骤。最近,Transformer 已用于配准,其表现优于卷积神经网络 (CNN)。Transformer 可以捕获图像特征之间的长距离依赖性,这已被证明对配准有益。然而,由于自注意力的计算/内存负载高,Transformer 通常用于下采样特征分辨率,无法捕获全图像分辨率下的细粒度长距离依赖性。这限制了可变形配准,因为它需要每个图像像素之间精确的密集对应关系。没有自注意力的多层感知器 (MLP) 在计算/内存使用方面效率高,从而可以捕获全分辨率下的细粒度长距离依赖性。然而,MLP 尚未在图像配准中得到广泛探索,并且缺乏对医学配准任务至关重要的归纳偏差的考虑。在本研究中,我们提出了第一个基于相关感知 MLP 的配准网络 (CorrMLP) 用于可变形医学图像配准。我们的 CorrMLP 在新颖的粗到细配准架构中引入了关联感知多窗口 MLP 块,该架构可捕获细粒度多范围依赖性以执行关联感知粗到细配准。对七个公共医疗数据集进行的大量实验表明,我们的 CorrMLP 优于最先进的可变形配准方法。
总结系统生物学中的一个主要挑战是了解基因调节网络(GRN)中的各种基因如何共同执行其功能和控制网络动态。在具有数百个基因和边缘的大型网络的情况下,该任务变得极为难以解决,其中许多具有冗余的调节作用和功能。现有的模型减少方法通常需要对动态系统及其响应动力学参数的详细数学描述,而动力学系统通常不可用。在这里,我们提出了一种用于使用基于合奏的数学建模,降低维度降低和通过Markov Chain Monte Monte Carlo方法优化基因的数据驱动的大grn,名为Sacograci的粗粒度大GRN,称为Sacograci。sacograci需要网络拓扑作为唯一的输入,并且可以抵抗GRN中的错误。我们通过合成,基于文学和生物毒素的GRN进行基准并证明其用法。我们希望Sacograci能够增强我们建模复杂生物系统基因调节的能力。
钙循环过程基于 CaCO 3 和 CaO 之间的可逆反应,近年来作为一种有前途的热化学储能系统引起了人们的极大兴趣,该系统可集成到聚光太阳能发电厂 (CaL-CSP) 中。该系统的主要缺点是 CaO 转化不完全及其烧结引起的失活。在本文中,通过使用定义明确且粒度分布较窄的标准石灰石颗粒进行实验性多循环测试,评估了粒度对这些失活机制的影响。结果表明,当在低温氦气中进行煅烧时,CaO 多循环转化主要受益于使用小颗粒。然而,只有对于低于 15 l m 的颗粒,这种增强才显著。另一方面,在高温 CO 2 中煅烧引起的强烈烧结使粒度与多循环性能的相关性降低。最后,SEM 成像表明,在氦气中进行煅烧时,活性丧失的机制主要是孔隙堵塞,而在高温 CO 2 中进行煅烧时,由于烧结导致的表面积大量损失是失活的原因。2019 作者。由 Elsevier BV 代表开罗大学出版。这是一篇根据 CC BY-NC-ND 许可证开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要 - 植物材料对行星科学,建筑和制造业中许多机器人任务的关键兴趣。但是,颗粒材料的动力学很复杂,并且通常在计算上非常昂贵。我们提出了一组方法和一个用于快速模拟图形处理单元(GPU)的颗粒材料的系统,并表明该模拟足够快,可以通过增强学习算法进行基础培训,目前需要许多动力学样本才能实现可接受的性能。我们的方法模型使用隐式时间播放方法进行多体刚性接触的颗粒材料动力学,以及算法技术,用于在粒子对和任意形成的刚体之间和任意形状的刚体之间的有效并行碰撞检测,以及用于最小化Warp Divergence的编程技术,以最大程度地构建单层构造(构建多项)。我们在针对机器人任务的几个环境上展示了我们的仿真系统,并将模拟器作为开源工具发布。
当前的大多数动作识别算法都是基于堆叠多个卷积,汇总和完全连接层的深网。虽然在文献中广泛研究了卷积和完全连接的操作,但处理动作识别的合并操作的设计,在行动类别中具有不同的时间颗粒状来源,但受到相对较少的关注,并且主要依赖于最大值或平均操作的解决方案。后者显然无能为力,无法完全表现出动作类别的实际时间粒度,从而构成了分类的瓶颈。在本文中,我们引入了一种新型的分层池设计,该设计在动作识别中捕获了不同级别的时间粒度。我们的设计原理是粗到精细的,并使用树结构网络实现;当我们自上而下时,当我们穿越该网络时,汇总操作的不变性越来越少,但及时坚决且本地化。通过解决一个约束的最小化问题来获得该网络中最适合给定的基础真相的操作组合(最适合给定的地面真相),该问题的解决方案对应于捕获全球层次层次合并过程中每个级别(及其时间粒度)贡献的权重分布。除了有原则性和扎根,提出的分层池也是视频长度和分辨率不可知的。对UCF-101,HMDB-51和JHMDB-21数据库进行挑战的广泛实验证实了所有这些陈述。关键字。多重聚合设计2流网络行动cop-nition
摘要 - 公制占用图广泛用于机器人导航系统中。但是,当机器人被部署在看不见的环境中时,构建准确的度量图会耗时。可以使用粗图直接在以前看不见的环境中直接导航?在这项工作中,我们提出了粗大地图导航器(CMN),这是一个可以使用不同的粗图在看不见的环境中执行机器人导航的导航框架。为此,CMN解决了两个挑战:(1)新颖而现实的视觉观察; (2)粗图上的误差和错位。为了解决在看不见的环境中的新型视觉观测,CMN了解了一个深刻的感知模型,该模型将视觉输入从各个像素空间映射到本地占用网格空间。为了解决粗图上的误差和未对准,CMN使用预测的局部占用网格作为观测值扩展了贝叶斯过滤器,并直接在粗图上保持信念。使用最新信念,CMN提取了全球启发式向量,该向量指导计划者找到本地导航行动。经验结果表明,CMN在看不见的环境中实现了高导航的成功率,明显优于基准,并且对不同的粗图形具有鲁棒性。