以动量守恒为起点,推导出一个多相机械能量平衡方程,该方程考虑了移动控制体积内存在的多个材料相和界面。该平衡应用于固定在三相接触线上的控制体积,该接触线在粗糙且化学均匀且惰性的固体表面上连续前进。使用控制体积内材料行为的半定量模型,进行数量级分析以忽略不重要的项,根据三相接触线周围发生的界面动力学知识,生成一个预测接触角滞后的方程。结果表明,三相接触线“粘滑”运动期间发生的粘性能量耗散是粗糙表面接触角滞后的原因,可以通过中间平衡界面状态的变化来计算。该平衡适用于 Wenzel、Cassie–Baxter 和 Fakir(超疏水)润湿状态,表明对于 Fakir 情况,在界面前进和后退过程中都会发生显著的耗散,并将这些耗散与“粘滑”事件周围发生的界面面积变化联系起来。
抽象的树枝状菌Asper是一种具有较高商业价值的竹类,是世界热带地区大规模农业林木种植园的首选竹子。使用组织培养的微磷化对于产生均匀的克隆至关重要的,这些克隆可容纳在工业农业污染项目中,用于竹类生物量,栖息地恢复或碳固存中。本文报告了使用市售种子建立D. Asper Invitro。使用三种不同的化学剂(次氯酸钠(20%),氯化汞(0.1%)和乙醇(70%),然后在Murashige和Skoog(MS)培养基上以6-苯甲酰胺(BAP)补充,浓度为1.0 -0 -0 -0 -0 -MG/l。在补充不同浓度的IBA吲哚-3-丁酸(IBA)和萘乙酸(NAA)的MS培养基上乘以繁殖,并最终在泥炭苔藓中生根并坚硬。我们的研究结果表明,灭菌方案消除了所有植物病原体,从而产生了轴突培养。补充5 mg/l BAP的全强度MS培养基在接种四个星期后产生的芽数量最高(每位外植体11.46)。在补充了3 mg/l BAP的MS培养基上获得了最高的乘法率(每次外植体3.95芽)。从启动到硬化所需的时间为70至90天,随后植物会准备进行现场试验。这项研究的结果将促进建立致力于生产D. Asper在本地生产的植物组织培养计划,从而消除了对进口的需求以及可能对当地农业林业行业有害的植物病原体的可能进入。关键字:dendrocalamus asper;竹子;微爆; 6苄基氨基嘌呤;吲哚-3-丁酸;萘乙酸; Murashige和Skoog Medium
此策略为基于Walsall的机构提供了一个单一的计划,以集中他们的活动来应对和预防无家可归。在制定该策略时,理事会非常感谢它从服务用户和机构中获得的投入和协助。特别是,这包括经历过无家可归的年轻人,经历过艰难的睡眠,经历了家庭虐待的人以及所有参加焦点小组和面试的新移民。此外,成人社会护理,儿童服务,健康以及在第三部门(例如当地住房协会)的同事都提供了宝贵的支持和投入,以使这一策略具有强大而有力地解决行政区无家可归的策略。
。cc-by-nc 4.0国际许可证未获得同行评审的认证)是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(本版本发布于2024年5月2日。; https://doi.org/10.1101/2024.04.29.591764 doi:biorxiv Preprint
Sciex临床诊断组合用于体外诊断。仅 Rx。 所有国家都不可用的产品。 有关可用性的信息,请联系您的本地销售代表,或参考https://sciex.com/diargnostics。 所有其他产品仅用于研究用途。 不适用于诊断程序。 标题上提到的商标和/或包括关联徽标在内的注册商标是AB Sciex PTE的属性。 Ltd.或其在美国和/或某些其他国家/地区的所有者。 ©2023 DH Tech。 dev。 PTE。 Ltd. MKT-27626-B 9/2023Rx。所有国家都不可用的产品。有关可用性的信息,请联系您的本地销售代表,或参考https://sciex.com/diargnostics。所有其他产品仅用于研究用途。不适用于诊断程序。标题上提到的商标和/或包括关联徽标在内的注册商标是AB Sciex PTE的属性。Ltd.或其在美国和/或某些其他国家/地区的所有者。©2023 DH Tech。dev。PTE。Ltd. MKT-27626-B 9/2023
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
1。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。 用于强型地面运动预测的动态破裂模型的伪纳米近似。 美国地震学会的公告,94(6),2051- 2063年。 2。 Graves,R。W.和Pitarka,A。 (2010)。 使用混合方法宽带地面运动模拟。 美国地震学会的公告,100(5a),2095– 2123。 3。 Graves,R。和Pitarka,A。 (2016)。 在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。 美国地震学会的公告。 4。 Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。 具有1分和2分统计的地震源参数的伪动态源建模。 Geophysical Journal International,196(3),1770– 1786年。 5。 Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。用于强型地面运动预测的动态破裂模型的伪纳米近似。美国地震学会的公告,94(6),2051- 2063年。2。Graves,R。W.和Pitarka,A。(2010)。使用混合方法宽带地面运动模拟。美国地震学会的公告,100(5a),2095– 2123。3。Graves,R。和Pitarka,A。(2016)。在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。美国地震学会的公告。4。Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。具有1分和2分统计的地震源参数的伪动态源建模。Geophysical Journal International,196(3),1770– 1786年。5。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。伪动力地面动作模拟中的故障粗糙度。纯净和应用的地球物理Pageoph,174(9),3419–3450。6。Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。参数偏微分方程的傅立叶神经操作员,2020。7。Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Andrews,D。J.(2005)。破裂动力学,能量损失在滑动区域之外。地球物理研究杂志,110,B01307。8。9。10。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。 运动源时间函数与地震动力学兼容。 美国地震学会的公告,95,1211–1223。 Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。运动源时间函数与地震动力学兼容。美国地震学会的公告,95,1211–1223。Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,P。M.和Beroza,G。C.(2002)。一个空间随机场模型,以表征地震滑移中的复杂性。地球物理研究杂志,107(B11),2308。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。美国地震学会公告200; 95(3):965–980。
近来,研究人员试图处理最多的信息,并使用那些不会丢失数据或信息丢失最少的技术和方法。模糊集和复杂模糊集等结构无法讨论上近似值和下近似值。此外,我们可以观察到模糊粗糙集无法讨论第二维,在这种情况下,可能会丢失数据。为了涵盖以前想法中的所有这些问题,笛卡尔形式的复杂模糊粗糙集概念是当今的需求,因为这种结构可以讨论第二维以及上近似值和下近似值。为此,在本文中,我们开发了笛卡尔形式的复杂模糊关系和复杂模糊粗糙集理论。此外,我们基于弗兰克 t 范数和 t 范数提出了复杂模糊粗糙数的基本定律。可以将整体输入转换为单个输出的基本工具称为聚合运算符 (AO)。因此,基于 AO 的特征,我们定义了复杂模糊粗糙 Frank 平均值和复杂模糊粗糙 Frank 几何 AO 的概念。利用已开发的理论来展示所提供方法的重要性和有效性是必要的。因此,基于已开发的概念,我们为此目的定义了一种算法以及一个说明性示例。我们利用引入的结构对土木工程 AI 工具进行分类。此外,对所提供方法的比较分析表明,与现有概念相比,引入的结构有所进步。
学习以场景图的形式从原始信息组成视觉关系是一项高度挑战的任务,这是由于上下文依赖性的,但是在依赖于场景所在的现场视觉应用程序中至关重要。但是,场景图生成(SGG)中没有当前的方法旨在为下流任务提供有用的图形。相反,主要重点主要是公开数据分布以预测更多细粒关系的任务。据说,所有的关系关系都不相同,至少其中一部分对现实世界应用没有用。在这项工作中,我们介绍了有效的SGG的任务,该任务旨在阐述相关关系的产生,从而促进了在下游任务(例如图像生成)中使用场景图的使用。为了支持进一步的方法,我们根据流行的Visual Genome数据集的注释提出了一个新的数据集,即VG150策划的新数据集。我们通过一组实验表明,该数据集包含比通常在SGG中使用的数据更高质量和多样的注释。最后,我们显示了从场景图1中生成图像生成的任务中该数据集的效率。