线边缘粗糙度 (LER) 的测量最近已成为光刻计量学界和整个半导体行业关注的话题。高级计量咨询小组 (AMAG) 是一个由国际 SEMATECH (ISMT) 联盟成员公司和美国国家标准与技术研究所 (NIST) 的首席计量学家组成的委员会,该委员会正在开展一项研究 LER 指标并指导关键尺寸扫描电子显微镜 (CD-SEM) 供应商社区采用半导体行业支持的标准化解决方案。2003 年国际半导体技术路线图 (ITRS) 为粗糙度提供了新的定义。ITRS 设想了边缘和宽度粗糙度的均方根测量。还有其他可能的指标,其中一些将在此处进行调查。ITRS 设想将均方根测量限制在粗糙度波长范围内,并且测量重复性优于指定的公差。本研究解决了满足这些规范所需的测量选择。推导出必须测量的线长和沿该长度测量位置间距的表达式。结果表明,图像中的噪声会产生粗糙度测量误差,这些误差既有随机成分,也有非随机成分(即偏差)。在特殊测试图案中报告了对紫外线抗蚀剂和多晶硅的测量结果,这些材料的粗糙度是典型的。这些测量结果表明,粗糙度测量对噪声的敏感度主要取决于边缘检测算法的选择和聚焦的质量。当使用基于模型或 S 形拟合算法并且图像聚焦良好时,测量对噪声的敏感度较低。使用测得的紫外线抗蚀剂线的粗糙度特性并应用 90 nm 技术节点的 ITRS 要求,推导出的采样长度和采样间隔表达式意味着必须以 7.5 nm 或更短的间隔测量至少为节点 8 倍的线长(即 720 nm)。
摘要:从制造角度来看,增材制造因其提高生产效率的潜力而广受欢迎。然而,在预定的设备、成本和时间限制内确保产品质量始终如一仍然是一个持续的挑战。表面粗糙度是一个关键的质量参数,难以达到要求的标准,这对汽车、航空航天、医疗设备、能源、光学和电子制造等行业构成了重大挑战,因为表面质量直接影响性能和功能。因此,研究人员非常重视提高制造零件的质量,特别是通过使用与制造零件相关的不同参数来预测表面粗糙度。人工智能 (AI) 是研究人员用来预测增材制造零件表面质量的方法之一。许多研究已经开发出利用人工智能方法的模型,包括最近的深度学习和机器学习方法,这些模型可以有效降低成本和节省时间,并正在成为一种有前途的技术。本文介绍了研究人员在机器学习和人工智能深度学习技术方面的最新进展。此外,本文还讨论了将人工智能应用于增材制造部件表面粗糙度预测的局限性、挑战和未来方向。通过这篇评论论文,我们可以发现,集成人工智能方法具有巨大的潜力,可以提高增材制造工艺的生产率和竞争力。这种集成可以最大限度地减少对机加工部件进行再加工的需求,并确保符合技术规范。通过利用人工智能,该行业可以提高效率,并克服在增材制造中实现一致产品质量所带来的挑战。
我们的研究重点是改善钻石(例如碳(DLC)涂层)的摩擦力特性,该特性由新型PVD技术高功率脉冲磁铁溅射(HIPIMS)沉积,并在工具钢上呈阳性脉冲。这些涂层由于其非凡的特性而引起了行业的极大兴趣:出色的耐磨性,非常低的摩擦系数,出色的硬度或生物相容性。这些研究的目的是改善不同钢底物上DLC涂层的摩擦力特性,例如粘合剂或耐磨性。
评审团:Jean-Yves Buffière、里昂国立应用科学学院、MATEIS、评审团主席 Éric Charkaluk 大学教授、巴黎综合理工学院、LMS、CNRS 研究主任报告员 Stéphane Godet、布鲁塞尔自由大学、4MAT、大学教授报告员 Anis Hor、 ISAE-SUPAERO,ICA,讲师、考官 Nicolas Saintier,ENSAM 波尔多, I2M,教授兼论文主任考官 Charles Brugger,ENSAM 波尔多,I2M,讲师和论文导师考官 Mohamed El May,ENSAM 波尔多,I2M,工程师,博士和共同导师论文考官
在半导体和绝缘纳米线和薄膜中,从边界粗糙度散射发出的降低的声子镜面P在较低的导热率中起主要作用。Although the well-known Ziman formula p = exp( − 4 σ 2 q 2 x ) , where σ and q x denote the root-mean-square boundary roughness and the normal component of the incident phonon wave vector, respectively, and its variants are commonly used in the literature to estimate how roughness attenuates p , their validity and accuracy remain poorly understood, especially when the effects of mode conversion cannot be ignored.在本文中,我们通过将其预测与从原子绿色功能(AGF)模拟中计算出的P值进行比较,从而研究了Ziman公式的更通用的Oggilvy公式的准确性和有效性,以获得单层石墨烯中粗糙边界的集合。分析了声子分散,入射角,极化,模式转换和相关长度的影响。我们的结果表明,对于0 ,Ogilvy公式非常准确
1介绍为响应0.8°C的全球变暖,在20世纪,海平面上升的速度大约增加了两倍。自卫星测量开始以来,海平面以每年3.4毫米的速度上升,比平均水平快80%。气候变化的政府间小组(IPCC)每年1.9毫米的模型投影(Rahmstorf,2010年)。这种情况背后的主要原因是温室气体的增长和导致的气候变化。这种海利升高正在在世界范围内寻求更多关注,因为许多国家尤其是岛屿地区遭受了很多影响。对于海岸或海上附近的土地,必须面临诸如更大的潮汐范围,特别是百年潮汐的问题,将导致定期洪水,以破坏非盐水栖息地。海水洪水的频率和幅度增加也有望在全球气候变化中更为普遍。海平面上升也将增加沿海侵蚀和盐水侵入。此外,海岸线撤退还将导致沿海的人为活性大量位移,这将导致进一步的内陆栖息地损失(Nerem等,2018)。在这种情况下,我们已经考虑了印度拉克沙德普(Lakshadweep)(UTL)的一个岛屿,名为Kavaratti。Lakshadweep(UTL)的联盟领土是印度的孤独环礁岛连锁店。Lakshadweep群岛涉及印度洋最广泛的珊瑚礁和环礁框架,就像地球上最大的环礁框架一样。除了持有巨大的有机品种并成为渔业库存的有利地点外,珊瑚礁还作为“针对海洋洪水和岛上暴风雨的“特征性保障组成部分”。
背景/目的:关于新推出的纳米填充和纳米混合复合材料的可抛光性的文献有限。本研究旨在通过测量表面粗糙度和光泽度值来评估纳米填充和纳米混合复合材料的可抛光性,并探索体外抛光前后复合材料的表面质量。材料和方法:选择一种纳米填充树脂复合材料、两种纳米混合树脂复合材料和一种微混合树脂复合材料。所有样品均在赛璐珞基质条上进行光固化。然后测试表面粗糙度 (Ra) 和光泽度 (GU) 值作为阴性对照。用 600 粒度碳化硅纸将样品打毛 30 秒作为阳性对照,然后用 Sof-Lex 抛光盘系统进行抛光。用轮廓仪和小面积光泽度计测量每个步骤的平均 Ra 和 GU 值。通过扫描电子显微镜观察表面质量。结果:抛光表面的 Ra 值显著高于阴性对照且低于阳性对照(P < 0.05)。所有材料在抛光后的 Ra 值均无显著差异(P > 0.05)。抛光表面的 GU 值显著低于阴性对照且高于阳性对照(P < 0.05)。抛光后,微混合树脂复合材料的 GU 值低于纳米填充和纳米混合树脂复合材料组。SEM 图像显示表面纹理和不规则性与表面粗糙度和光泽度的结果相对应。结论:使用 Sof-Lex 盘系统抛光后,纳米填充、纳米混合和微混合复合材料之间的表面粗糙度没有显著差异。微混合复合材料的光泽度值低于纳米填充和纳米混合树脂复合材料。ª 2021 中华民国牙科科学协会。由 Elsevier BV 提供出版服务 本文为一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons. org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
1工程,技术和设计学院,坎特伯雷基督教教会大学,坎特伯雷CT1 1Qu,英国2 Que 2,2 Que,英国2 Que,阿拉伯科学,技术和海上运输学院工业与管理工程系,亚历山大21599,埃及; Mahmoudelsayed12@gmail.com博士3埃及Tanta 31512的生产工程与机械设计系; m.ahmadein@f-eng.tanta.edu.eg 4机械工程系,Imam Mohammad Ibn Saud Saud University(IMSIU),Riyadh 11432,沙特阿拉伯; naalsaleh@imamu.edu.sa(N.A.A。 ); smataya@imamu.edu.sa(S.A.)5机械工程系,工程学院,位于阿尔·萨塔姆·本·阿卜杜勒齐兹(Sattam bin Abdulaziz Prince)的Al Kharj,Al Kharj,Al Kharj 16273,沙特阿拉伯; moh.ahmed@psau.edu.sa 6伯明翰大学工程学院,伯明翰B15 2TT,英国; k.e.a.essa@bham.ac.uk *通信:enghanisalama@yahoo.com1工程,技术和设计学院,坎特伯雷基督教教会大学,坎特伯雷CT1 1Qu,英国2 Que 2,2 Que,英国2 Que,阿拉伯科学,技术和海上运输学院工业与管理工程系,亚历山大21599,埃及; Mahmoudelsayed12@gmail.com博士3埃及Tanta 31512的生产工程与机械设计系; m.ahmadein@f-eng.tanta.edu.eg 4机械工程系,Imam Mohammad Ibn Saud Saud University(IMSIU),Riyadh 11432,沙特阿拉伯; naalsaleh@imamu.edu.sa(N.A.A。); smataya@imamu.edu.sa(S.A.)5机械工程系,工程学院,位于阿尔·萨塔姆·本·阿卜杜勒齐兹(Sattam bin Abdulaziz Prince)的Al Kharj,Al Kharj,Al Kharj 16273,沙特阿拉伯; moh.ahmed@psau.edu.sa 6伯明翰大学工程学院,伯明翰B15 2TT,英国; k.e.a.essa@bham.ac.uk *通信:enghanisalama@yahoo.com
已开发出一种通过测量散射光的角度分布来研究表面粗糙度的仪器。在我们的仪器中,氦氖激光器发出的光束以可能变化的入射角照射表面。散射光分布由位于半圆形轭架中的 87 个光纤传感器阵列检测,该半圆形轭架可绕其轴旋转,以便可以在整个半球上采样散射辐射。检测器阵列的输出在实验室计算机中数字化、存储和分析。最初的实验集中在高度二维的不锈钢表面测量上,其产生的散射分布位于入射平面内。通过将角度散射数据与由触针式仪器测量的数字化粗糙度轮廓计算出的理论角度散射分布进行比较来分析结果。理论分布是通过将粗糙度分布代入 Beckmann 和 Spizzichino 开发的电磁散射积分方程的运算数来计算的。这种方法直接测试了基本光学理论的准确性。
几十年来,散射技术一直被广泛用于表征光学质量表面(即粗糙度远小于照明波长的表面)。散射光在许多领域都至关重要,例如,对于光学滤波器的最终性能、天文学和空间应用的先进光学系统或微电子学。对于所有这些应用,降低粗糙度和表面缺陷都是一个主要问题,而抛光技术的改进使得制造粗糙度低于几分之一纳米的表面成为可能。与此同时,测量技术也得到了发展,可以可靠地检测这些表面的特性,而光散射已被证明是一种非常有效、快速且非侵入性的方法,可以表征所有所需的参数。如今,角度分辨散射仪 [16-19] 可以在整个角度范围内以及从可见光到近红外的宽光谱范围内实现低于非吸收朗伯模式的 8 个十年的动态。