以人工智能、云计算、区块链、虚拟现实等为代表的新兴数字技术的成熟和商业化,正在催生一种新的、更高级的经济形态,即数字经济。数字经济不同于传统的工业经济,它具有清洁、高效、绿色、可循环等特点,代表并推动着全球经济发展的未来方向,尤其在突如其来的新冠疫情这一持续性灾难的背景下。因此,科学合理地建立数字经济发展综合评价模型至关重要。本文首先在文献分析的基础上,人工采集数字经济发展相关指标,然后利用灰色动态聚类和粗糙集约简理论进行筛选,从数字创新动力支撑、数字基础设施建设支撑、国家经济环境与数字政策保障、数字融合与应用四个维度构建数字经济发展评价指标体系。其次采用群体FAHP法、熵值法和改进的CRITIC法计算主观权重和客观权重,并融入方差最大思想计算组合权重,结合灰色关联分析和改进的VIKOR模型对2013—2019年中国31个省市的数字经济发展水平进行系统评价。实证分析结果表明,中国数字经济整体发展呈现叠加上升趋势,四大经济区数字经济发展不均衡。最后对中国省区数字经济建设提出了有针对性的意见。
摘要 本学术研究旨在扩展对计算机系统中逻辑推理的理解。随着应用程序的不断创新,现代技术创新创造了计算机软件,使人们只需单击按钮即可完成日常工作。在计算机工程领域,获得逻辑推理能力对于应变和建立技术解决方案至关重要。通过技术的创新和进步,应用程序开发人员继续为进步伸出了轻松之手。这种轻松之手通过提供便利的应用程序来标记。获得逻辑应用程序的组件是传感器、粗糙集理论、空间图像和人工智能。 关键词:逻辑、计算机系统、应用程序、进步。 1. 简介 在不断的技术进步和进步中,世界各地目前都需要多样化、富有创造力和聪明的问题解决者。计算机工程领域培训个人帮助构建和创新计算机的不同组件。这门工程学科旨在确保计算机的所有各种元素能够很好地结合在一起,并有助于提高用户的工作效率 [1]。根据计算机工程,逻辑性是一种创建推理来证明另一个陈述的能力。提高逻辑推理能力可以帮助人们在这个工程领域取得成功,因为在设计程序时,逻辑通常用于理解和正确使用符号语言 [2]。对于所有职业来说,逻辑思维能力都被认为对工作环境至关重要。任何职位的员工都可能被要求找到某些问题的解决方案,而这些问题可能是他们专业领域与生俱来的;因此,工作场所中逻辑思维技能利用得越多,员工决策过程的生产力就越高,错误就越少 [3]。但在以逻辑技能为目标的计算机系统的帮助下,用户可以准确地将交给他们的问题或一组
脑机接口 (BCI) 是一种新兴的交互式通信方法,通过解码大脑活动产生的信号,实现对假肢和外部设备的神经控制,以及中风后运动康复。这种最先进的技术有可能彻底改变生活的各个方面,并显着提高整体生活质量。BCI 具有广泛的应用范围,从医疗援助到人类增强(Ahmed 等人,2022 年;Altaheri 等人,2023 年)。通常,脑电图 (EEG) 信号反映大脑的电活动,并通过在头皮上放置电极阵列来非侵入式地记录。获得真实值(时间和通道)二维 EEG 信号矩阵使人与外部设备之间的直接通信成为可能(Graimann 等人,2010 年)。运动想象 (MI) 是一种思考如何移动身体的某个部位而不移动身体的活动。基于 EEG 的 MI 活动已广泛应用于车辆控制、无人机控制、环境控制、智能家居、安全和其他非医疗领域(Altaheri 等人,2023 年)。然而,解码 MI-EEG 信号仍然是一项具有挑战性的任务。在此任务中,其他生理信号(例如面部肌肉活动、眨眼和环境中的电磁干扰)会污染记录的 MI-EEG 信号并导致信噪比低(Lotte 等人,2018 年)。MI-EEG 模式的个体差异受到参与者大脑结构和功能差异的影响。此外,EEG 系统在信号通道之间表现出一定程度的相关性,这进一步使信号处理过程复杂化(Altaheri 等人,2022 年)。在对 EEG 信号进行分类和识别的传统方法中,通常依赖于领域特定知识。这导致人们更加关注开发有效的特征提取和分类技术,这主要是由于 EEG 信号固有的低信噪比( Huang et al., 2019 )。人们通常使用各种特征提取方法,包括独立成分分析( Barbati et al., 2004 ; Delorme and Makeig, 2004 ; Porcaro et al., 2015 ; Ruan et al., 2018 )、小波变换( Xu et al., 2018 )、共同空间模式( Gaur et al., 2021 )和经验模态分解( Tang et al., 2020 )。在对 EEG 信号进行预处理后,从处理后的信号中提取基本特征并输入分类器以确定输入实例的类别( Vaid et al., 2015 )。传统的特征提取方法通常涉及手工设计的特征提取器,例如滤波器组共享空间模式 (FBCSP) (Ang et al., 2008) 或黎曼协方差 (Hersche et al., 2018) 特征。Ang et al.(2012)使用滤波器组公共空间模式(FBCSP)算法来优化MI-EEG上公共空间模式(CSP)的受试者特定频带,然后采用基于互信息的最佳个体特征(MIBIF)算法和基于互信息的粗糙集约简(MIRSR)算法从信号中提取判别性的CSP特征。最后,我们使用CSP算法进行分类并获得了良好的性能。值得注意的是,所有这些步骤都非常耗时。虽然传统方法通过预处理方法提高了EEG信号的信噪比,但从不同时间戳和受试者采集的EEG信号通常