加利福尼亚州桑尼维尔,2024 年 5 月 15 日,Luminus Devices 自豪地推出了一系列突破性的 4 合 1 RGBL(红-绿-蓝-黄绿色)LED,专为需要高输出混色和高显色指数 (CRI) 的舞台和建筑照明系统而设计。4 合 1 RGBL LED 各个发射器之间的间距最小,可提供无与伦比的混色能力,为照明设计师提供广泛的调色板来创造迷人的视觉效果。黄绿色(570 nm 主波长)通道取代了传统 4 合 1 LED 中使用的冷白色 LED,以扩大色彩空间并提高亮度。这些 LED 在最大电流下拥有一流的流明输出,同时保持超过 85 的高 CRI,确保在 3000K 至 8000K 的整个色温范围内提供明亮的照明。所有通道均可驱动高达 3A 和 100% DC,从而实现高流明输出且可靠性不打折扣。
智能家居/城市是物联网的重要体现之一,2 涉及各种类型的电子设备,如智能照明系统、3、4 音频视频设备和安全系统。5 其中,语音激活智能照明可以翻译语音命令,实现对灯光的控制。目前,发光二极管 (LED) 和有机发光二极管 (OLED) 已成为智能家居/城市的流行照明系统,6 而具有可调色发射的有机荧光材料是 OLED、7 生物传感、生物成像、8、9 防伪等潜在应用的重要组成部分。 10 与无机荧光粉相比,有机材料具有精确的分子结构,且分子骨架易于修改,有利于获得具有奇妙光物理性质的各种荧光材料,例如稳定的发光自由基、11 颜色可调的发射,以及单线态裂变、12 室温磷光 13 等。14,15 因此,人们致力于开发新型有机荧光材料,以实现具有先进应用的高科技有机电子器件。此外,已经构建了许多用于多色发射以及白光发射的可调荧光发射有机分子,例如比率响应发光材料、16
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月1日发布。 https://doi.org/10.1101/2024.03.28.585318 doi:Biorxiv Preprint
光遗传学工具箱中的一种众所周知的现象是,所有光门控离子通道(包括红移的通道旋转蛋白(CHRS))都被蓝光激活,而蓝移Chrs对更长的波长的响应最小。在这里,我们利用此功能创建了一个系统,该系统允许具有红光脉冲的神经元高频激活,同时允许通过Blue Light的毫秒精度抑制动作电位。我们通过将超快速的红色CHR与适当匹配的动力学匹配的蓝色光敏感阴离子通道配对来实现这一目标。这需要筛选几个阴离子选择性CHRS,然后进行基于模型的诱变策略,以优化其动力学和光谱。海马中的切片电生理学以及对颤音运动的行为检查表明,蓝光的激发最少。允许对具有红光的神经元进行高频光学遗传激发,而蓝光抑制动作电位在光脉冲的持续时间内被罚款。
摘要 强太赫兹 (THz) 电场和磁瞬变开辟了科学和应用的新视野。我们回顾了实现具有极端场强的亚周期 THz 脉冲最有希望的方法。在双色中红外和远红外超短激光脉冲的非线性传播过程中,会产生长而粗的等离子体串,其中强光电流会导致强烈的 THz 瞬变。相应的 THz 电场和磁场强度分别可能达到千兆伏每厘米和千特斯拉的水平。这些 THz 场的强度使极端非线性光学和相对论物理学成为可能。我们从光物质与中红外和远红外超短激光脉冲相互作用的微观物理过程、这些激光场非线性传播的理论和数值进展以及迄今为止最重要的实验演示开始,进行了全面的回顾。
1分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系91分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系9
本报告是作为美国政府机构赞助的工作报告而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
在亲水性聚合物基质中配制低水溶性小分子药物,也称为无定形固体分散体 (ASD),是实现有效药物输送和生物利用度的最常见方法之一。生产高性能 ASD 取决于各种因素,例如药物赋形剂基质的物理稳定性、其在溶解过程中与聚合物的相互作用以及药物在水性介质中的释放速率。通常,研究人员会进行大量的设计和实验迭代来实现这一目标。虽然可以从实验数据中得出关于药物释放行为的假设,但对基本机制的全面理解和对分子水平事件的洞察仍然难以实现。仅通过实验很难获得详细的药物/聚合物/水相互作用。因此,需要一种更有效的方法来指导为特定药物选择合适的赋形剂(包括聚合物)。
抽象的高粱双色是一种重要的全球作物,适合于玉米或米饭更炎热,更干燥的条件下壮成长,具有与独特且分层的土壤微生物组相互作用的深根,在植物健康,生长和碳存储中起着至关重要的作用。对农业土壤的微生物组研究,尤其是生长二色的田地,主要限于表面土壤(<30 cm)。在这里,我们研究了土壤特性,田间位置,深度和高粱类型的生物因子的非生物因素,跨土壤微生物组上的38种基因型。利用16S rRNA基因扩增子测序,我们的分析揭示了微生物组成的显着变化,并且无论基因型或田间如何,双色链球菌内的土壤深度增加。值得注意的是,特定的微生物家族,例如热蛋白孢子科和ABS-6阶内未分类的家族,富含30厘米以上的更深的土壤层。此外,微生物的丰富度和多样性的深度下降,在60-90 cm层达到最低限度,而层的多样性则超过90 cm。这些发现突出了土壤深度在农业土壤微生物组研究中的重要性。
摘要。受实验观察 [1] 的启发,驱动具有弱无序性的 3D 盒子中的非相互作用玻色气体会导致幂律能量增长,E ∝ t η,η = 0.46(2),以及显示动态缩放的压缩指数动量分布,我们对该系统进行了系统的数值和分析研究。薛定谔方程模拟表明,随着无序强度的增加,η ≈ 0.5 到 η ≈ 0.4 的交叉,暗示存在两种不同的动力学状态。我们提出了一个半经典模型,该模型可以捕捉模拟结果,并允许从能量空间随机游动的角度理解动力学,从中可以分析获得从 E ∝ t 1/2 到 E ∝ t 2/5 缩放的交叉。这两个极限对应于随机游动受到弹性无序引起的散射速率或驱动器可以改变系统能量的速率的限制。我们的结果为进一步的实验提供了理论基础。