芯片贴装是集成电路 (IC) 封装工艺中最关键的工艺之一。过去几年,芯片厚度越薄,漏源导通电阻 RDS(on) 越小,顶部金属和焊盘之间的硅电阻越低,散热性能越好,堆叠封装厚度越薄,重量越轻,这些要求就越高。这种三维技术代表了封装创新的下一波浪潮,并将在未来几年内实现大幅增长 (Ibrahim 等人,2007 年)。这些趋势对现有的电子封装技术(主要是芯片拾取工艺)提出了相当大的挑战。必须特别注意处理更薄芯片的工艺,以确保半导体产品的可靠性和质量 (Huiqiang 等人,2015 年;Carine 等人,2014 年)。
Jean-Baptiste Orsatelli、Eric Paroissien、Frederic Lachaud、Sébastien Schwartz。航空航天复合材料结构的粘合冲洗修复:建模策略综述及其在修复优化、可靠性和耐久性方面的应用。复合材料结构,2023,304,第 116338 页。10.1016/j.compstruct.2022.116338。hal-03855537
近海风力涡轮机的安装已在全球范围内取得了迅速而实质性的进步,并且通过增强的技术预测,将降低成本并增加服务时间。应用于主要结构的二级结构,因为单极的过渡片可以是例如电缆支撑,船着陆或阳极系统。这些结构通常是焊接的,这会导致有问题的缺口效应和氢化,尤其是对于水下应用。也将技术设备作为水下焊接的水下电流或人工住房处理也很具有挑战性。粘合键将导致成本降低,因为可以避免上述负面方面。腐蚀保护涂层和主要结构将不再损坏,因此不需要随后的涂层。本文重点介绍了永久暴露于水的区域。关键点是如何形成粘附和内聚力的能力如何受水下的施用过程影响。因此,设计了螺柱粘结固定器,以便将粘合剂注入水下的粘结区域。研究了通过暴露于人造海水的不同粘合剂,表面预处理和降解的负载能力。粘附是通过两种不同的粘合剂来实现的,这些粘合剂能够治愈并在水下实现合理的强度。此外,两个选定的涂层系统能够改善粘合键的性能。
本文介绍了在标准 JEDEC 跌落可靠性测试板上对边缘粘合的 0.5 毫米间距无铅芯片级封装 (CSP) 进行的跌落测试可靠性结果。测试板在几个冲击脉冲下接受跌落测试,包括峰值加速度为 900 Gs,脉冲持续时间为 0.7 毫秒,峰值加速度为 1500 Gs,脉冲持续时间为 0.5 毫秒,峰值加速度为 2900 Gs,脉冲持续时间为 0.3 毫秒。使用高速动态电阻测量系统监测焊点的故障。本研究中使用的两种边缘粘合材料是 UV 固化丙烯酸和热固化环氧材料。对具有边缘粘合材料的 CSP 和没有边缘粘合的 CSP 进行了测试。报告了每块测试板上 15 个元件位置的跌落至故障次数统计。测试结果表明,边缘粘合的 CSP 跌落测试性能比无边缘粘合的 CSP 好五到八倍。使用染料渗透和扫描电子显微镜 (SEM) 方法进行故障分析。观察到的最常见故障模式是焊盘翘起导致线路断裂。使用染料渗透法和光学显微镜对焊料裂纹和焊盘翘起故障位置进行表征。
抽象的粘着蛋白将基因组DNA挤压成促进染色质组装,基因调节和重组的环。在这里,我们表明粘着蛋白将负超胶引入挤出的DNA中。超螺旋需要粘蛋白的ATPase头,这些头部夹紧DNA以及在粘蛋白的铰链上的DNA结合位点,表明在铰链和夹具之间约束粘蛋白超侧Coil DNA。我们的结果表明,一旦粘蛋白在超涂层期间达到其失速扭矩,DNA挤出会停止,而粘蛋白突变体预测会停滞在较低的扭矩形成细胞中的较短环。这些结果表明,超涂层是环挤出机制的组成部分,并且粘着蛋白不仅通过循环DNA,而且通过将其超级旋转来控制基因组结构。真核间相细胞中的主要文本,SMC(“染色体的结构维持”)复合粘着蛋白将基因组DNA折叠成环和拓扑结构域(TADS;参考(1-4)),可以调节转录(5),重组(6,7),姐妹染色单体分离(8)和复制(9)。粘着蛋白通过由ATP结合 - 水溶液周期控制的构象变化(12)(在(13)中进行了综述),将DNA挤压为环(10,11)。这些是由粘蛋白的SMC1和SMC3亚基催化的,其中包含50 nm长的盘绕螺旋,二聚体“铰链”结构域和球形ATPase'heads'(图s1a),与ABC转运蛋白相关(14)。在ATP结合后,粘蛋白的头部接合和一个称为NIPBL“夹具” DNA的亚基在接合的ATPase头顶上(参考(12,15-17);如图。s1b)。这些动作产生〜15 pn力(18)和循环挤出步骤〜40 nm(100-200 bp;ref。(19)),表明在头部互动过程中将DNA卷入形成循环中。相比之下,在环挤出过程中DNA的构象变化知之甚少。拓扑异构酶II在粘着蛋白环的底部结合并切割DNA(20-23),这表明DNA在这些位点上是超螺旋的。有丝分裂SMC复合物冷凝蛋白还与拓扑异构酶(24-30)共定位并相互作用,并且可以在体外超涂DNA(31-33)。已经提出了此过程发生在循环挤出过程中(31,33),但发现粘着蛋白不适合
许多过程参数可能会影响聚合物基质复合结构中粘合键关节的性能。除了与表面制备相关的参数列表外,这些参数还可以包括(但不限于):粘合剂年龄,粘附年龄(可以直接与贴材中的固定水分直接相关),粘合剂的粘合时间和固化特性(包括坡度,包括坡道,气候速率和持有持续时间)。在评估这些潜在关键过程参数的效果方面,就测试方法而言存在几种选项。lap剪切可能是最被考虑的测试方法,这主要是由于其易用性。母体面板的制造很简单,尽管已知粘合区边缘的粘合剂在关节的自由边缘处的应力浓度至关重要[1,2]。此外,测试是具有成本效益的,由于不需要专门的固定,测试持续时间很短,并且数据收集需求最少(通常仅记录故障负载)。然而,膝盖剪切测试仅验证短期键强度,并且是长期耐用性的差[3-6]。
产品可能是或变得危险。买方应从亨斯曼那里获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及适当的运输,处理和存储程序,并应遵守所有有关政府法律,法规和标准与处理,使用,使用,存储,分配,分配,分配以及对产品的处理,并遵守所有适用的政府法律,法规和标准。买方还应采取所有必要的步骤,以充分告知,警告和熟悉其员工,代理,直接和间接的客户和承包商,他们可能会处理或暴露于与安全处理,使用,存储,运输,运输和接触产品以及对产品以及产品以及产品的容器或设备的所有危害以及适当的程序以及适当的程序以及适用的产品以及适用的产品,以及该产品的产品,以及该产品的产品或销售的产品。
摘要:锂 - 实用兴趣的硫电池需要薄层支撑以实现可接受的容量能量密度。但是,由于硫的绝缘性质和涉及溶解多硫化物电沉积的反应机制,因此无法在LI/S系统中有效地使用典型的铝电流收集器。我们使用碳涂层的Al电流收集器研究LI/S电池的电化学行为,在该收集器中,低厚度,高电子电导率,同时,由无粘合剂的几层石墨烯(FLG)允许反应产物的宿主能力。FLG启用厚度低于100μm的硫电极,快速动力学,低阻抗和1000 mAh G S -1的初始容量,300个周期后保留70%以上。使用FLG的LI/S细胞分别显示出300 WH-1和500 WH kg-1的体积和重量的能量密度,它们的值是与市售的锂离子电池竞争良好的值。■简介
尽管YB 6和实验室6具有相同的晶体结构,原子价电子的形象和声子模式,但它们表现出截然不同的声子介导的超导性。yb 6低于8.4 K的超导导,使其成为已知硼化物的第二个最高临界温度,仅次于MGB 2。实验室6直到接近 - 绝对零温度(低于0.45 K)才能超导。尽管以前的研究已经量化了Yb 6的更高费米 - 水平(E F)状态和较高的电子 - Phonon耦合(EPC)的规范超导性描述(EF),但尚未全面评估该差异的根源。通过化学键合,我们确定灯笼中的低谎言,未占用的4F原子轨道是这些超导体之间的关键区别。这些轨道在YB 6中无法访问,与πB– B键杂交,并使能量的能量低于σB-B键,否则在E f时。这种频段的反转至关重要:我们显示的光学声子模式负责超导性,导致Yb 6的σ-轨道在重叠中发生巨大变化,但彼此弱于实验室6的π轨道。yb 6中的这些声子甚至访问电子状态的交叉,表明EPC强。在实验室6中未观察到这种交叉。最后,显示了一个超级电池(m k-点)会发生PEIERL-喜欢YB 6中的效果,从柔软的声音子和相同的电子 - 耦合的光学模式中引入了其他EPC。总体而言,我们发现实验室6和YB 6具有从根本上不同的超导性机制,尽管它们差不多 - 身份差。