Harutoshi Yamada、Teruki Tsurimoto(筑波大学纯粹与应用科学研究生院)、Sirawit Pruksawan 和 Naito(筑波大学纯粹与应用科学研究生院、国家材料科学研究所)
使用合适的伤口敷料对于优化伤口愈合和提高患者舒适度至关重要。本研究评估了新推出的含有 SAP 的硅胶粘合边缘敷料 RespoSorb ® 硅胶边缘的临床益处。该研究评估了敷料的可用性、患者舒适度和整体性能。有效的伤口管理,特别是通过保持最佳伤口平衡,对于改善愈合结果和患者满意度至关重要。含有聚丙烯酸酯聚合物 (SAP) 的超吸水性敷料具有独特的优势,有助于调节伤口渗出液水平、保持水分平衡,并将潜在的伤口抑制剂(例如蛋白酶,如 MMP2、MMP9、弹性蛋白酶和微生物)结合在敷料核心内,防止进一步的组织损伤并促进更快的愈合。[1]
另一侧的组合可以增加其抗菌活性(Han等人2017; Shao等。2015)。SA和CMC组合的抗菌活性基于不同的参数,例如使用的量,矩阵中的其他成分,培养基的pH和孵育温度(Abdellatif Soliman等人2021; Han等。2017)。因此,在这项研究中,制备的水凝胶基质中抗菌活性的存在基本上归因于其内在组成。迄今为止,抗菌活性通常由琼脂盘扩散法确定(Han等人2017; Kamoun等。2015; Kumar等。2019)。尽管如此,由于组件相互作用及其
此预印本版的版权持有人于2024年1月3日发布。 https://doi.org/10.1101/2024.01.02.573878 doi:Biorxiv Preprint
近年来,增材制造技术领域的发展呈指数级增长,为各个领域带来了诸多优势,包括材料种类繁多、几何自由度高、材料浪费少和实现速度快。对于金属而言,最发达的技术是粉末床技术,主要是基于熔合,最终结构通过激光或电子束加固。利用这些技术,可以实现接近传统金属的出色形状和密度。另一方面,在粘合剂喷射技术中,液体粘合剂滴的沉积使灰尘颗粒能够逐层连接,类似于 3D 打印。生产的部件必须经过脱脂和烧结工艺才能达到最终密度。大多数研究都是为了完善工艺参数以确保机械性能,但在腐蚀行为领域的研究却很少。
摘要 多种增材制造方法已经成熟,并已在多个行业投入常规生产。对于金属加工,通常使用线材或粉末作为原料。线材加工通常用于相对较大的结构构建,而粉末加工通常提供更精确的金属应用。对于粉末床熔合工艺,使用非常细的粉末(通常为 20 µm 至 65 µm),而对于定向能量沉积,粉末的范围在 50 µm 至 160 µm 之间。这种细粉末可能对人类健康构成风险(吸入、皮肤整合)。避免在生产环境中接触粉末可能是一项艰巨的任务,甚至无法避免。因此,开发了一种替代工艺,该工艺不是以自由粉末颗粒的形式提供粉末,而是以粉末片的形式提供粉末。为了实现颗粒之间必要的粘合,使用粘合剂。为了了解粘合剂在激光加工粉末片过程中的影响,产生了单脉冲和线处理并用高速成像记录下来。记录显示了粘合剂的蒸发和相关的粉末颗粒的喷出。在较低的能量输入下,粘合剂蒸发导致较少的飞溅,这表明在低加热速率下加热粘合剂会对粉末颗粒产生较小的压力。
ÅNgströmbond®AB9075是一种非常灵活的,低粘度紫外线/可见光的轻质固化粘合剂,设计用于粘合各种塑料,玻璃和陶瓷。这种清晰的低应力粘合剂是需要高光学传输的应用的绝佳选择。Typical Properties : Color: Before cure light yellow After cure Clear Specific Gravity 1.1 Viscosity @ 25°C, cps: 550 Hardness, Shore A: 20 Elongation, % 400 Refractive index 1.49 Block Shear Str, psi 400 Operating Temperature, °C: -50 to 125 Glass Transition, °C -40 Solids content, % 100 Optical transmission 600– 2000nm, 10um >98%
这项工作介绍了优化的模型和数值模拟的结果以及基于CNT的GAAS/INAS多个量子井(从5到70 QWS)GAAS太阳能电池的分析。这些QW被发现将吸收边缘延伸到GAA带隙的范围之外。此外,随着模型中引入宽带插入式凹陷后面场(BSF)层,由于从设备底部反射了未吸附的光子,因此提高了效率,从而提高了效率。所提出的模型使用异质的CNT层作为顶部半透明电极。可以观察到,这种具有较低板电阻和更好光线的CNT顶层可以显着提高整体效率。我们的优化单元格具有35 number 25nm量子井结构,具有100 nm CNT顶层,板电阻为128Ω/□可将效率提高到32.46%(没有CNT顶层)。EQE接近90%。为了显示我们发现的准确性,显示了数值建模的关键阶段,并使用标准实验数据检查了基本仿真数据。在创建商业上可行的QWSCS迈出的重要一步是建议基于CNT的QWSC模型在现代TCAD工具环境(Silvaco Atlas)中的有效应用。keyowrds:碳纳诺管(CNT),INAS/GAAS,SILVACO TCAD,量子井太阳能电池(QWSC)
摘要:锂离子电池(LIB)已成为各种应用的必不可少的能量存储设备,从便携式电子到电动汽车到可再生能源系统。LIB的性能和可靠性取决于几个关键组件,包括电极,分离器和电解质。其中,电极的粘合剂材料在确定LIB的整体性能和耐用性方面起着至关重要的作用。本综述介绍了传统上在LIBS的阴极,阳极和分离材料中使用的聚合物粘合剂。此外,它探讨了传统聚合物粘合剂中发现的问题,并检查了锂离子电池的下一代聚合物粘合剂材料的研究趋势。迄今为止,N-甲基-2-吡咯烷酮(NMP)作为锂电池电极生产中的溶剂的广泛使用已成为标准实践。然而,最近对其高毒性的担忧促使环境审查增加并施加严格的化学法规。因此,越来越紧迫的探索替代方案既是环境良性且更安全的用于电池制造的替代方案。对锂电池行业中对不同粘合剂研究的需求不断增长,进一步强调了这种紧迫的需求。鉴于当前对可持续性和环境责任的重视,必须研究一系列粘合剂选项,这些粘合剂选项可以与绿色和生态意识的电池生产的不断发展的景观保持一致。在这篇评论论文中,我们引入了各种活页夹选项,可以考虑到当前对电池性能增强和环境责任的强调,可以与环保和可持续的电池生产的不断发展的景观保持一致。