摘要 微生物腐蚀,也称为微生物或生物腐蚀,是由水中的特定细菌粘附在金属上引起的。它被广泛认为是灾难性腐蚀故障的直接原因,相关损失每年高达数十亿美元。已知微生物的某些活动(例如其粘附能力)会导致金属腐蚀速度加速。细菌粘附是表面定植过程的开始,称为生物膜发展,涉及物理化学和分子相互作用。细菌粘附过程受多种参数的影响,这些参数大致可分为环境、细菌和材料特性。以下文章回顾了细菌粘附生物材料表面的机制、影响这种粘附的因素以及用于评估微生物腐蚀的技术。
1 圣地亚哥德孔波斯特拉大学临床医院儿科先天性代谢性疾病诊治科,西班牙圣地亚哥德孔波斯特拉 15704; mj.decastrol@gmail.com 2 IDIS,圣地亚哥德孔波斯特拉健康研究所,15704 圣地亚哥德孔波斯特拉,西班牙 3 CIBERER,罕见疾病网络生物医学研究中心,28029 马德里,西班牙; mdeltoro@vhebron.net 4 MetabERN,欧洲遗传代谢病参考网络,33100 乌迪内,意大利 5 巴塞罗那自治大学 Vall d'Hebron 大学医院儿科神经病学系,CIBERER,MetabERN,08035 巴塞罗那,西班牙 6 医学遗传学服务,基因治疗中心,医学遗传学临床研究组,生物发现研究组,HC PA,阿雷格里港 90035-903,巴西; rgiugliani@hcpa.edu.br 7 遗传学系,UFRGS,阿雷格里港 91501-970,巴西 8 DASA/GeneOne,圣保罗 04078-013,巴西* 通信地址:maria.luz.couce.pico@sergas.es;电话:+34-981-950-151
摘要:非小细胞肺癌(NSCLC)的多药耐药是临床常见的问题,是导致化疗失败的主要原因之一,因此,如何克服或防止耐药成为临床研究的热点和难点问题。本研究旨在探讨MUC1在NSCLC中调控紫杉醇耐药细胞株A549/PR的表达模式、功能及其潜在机制。分别采用RT-qPCR和Western blot检测MUC1的mRNA和蛋白质水平。采用CCK-8检测A549/PR细胞的细胞活力。此外,采用流式细胞术检测A549/PR细胞的凋亡率。其中,MUC1在临床NSCLC组织和A549/PR细胞中均过表达。沉默MUC1可通过上调Bax和Caspase-3的表达、下调Bcl-2的表达,明显抑制紫杉醇治疗下A549/PR细胞的增殖、促进其凋亡,提示化疗联合调控MUC1可能成为未来克服NSCLC紫杉醇耐药的一种有前途的治疗方法。
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
摘要:粘多糖化病(MPS)由一组遗传性溶酶体储存障碍组成,这些遗传疾病是由参与糖氨基糖(Gags)代谢的某些酶的缺陷引起的。插孔的异常积累会导致儿童期在各种组织和器官的渐进功能障碍,导致过早死亡。由于当前的疗法是有限的且不具备的,因此需要探索病理学的分子机制,以满足MPS患者未满足的需求以改善其生活质量的需求。溶酶体半胱氨酸组织蛋白酶是一个在众多生理过程中起关键作用的蛋白酶家族。失调。本综述总结了有关MPS疾病及其目前管理的基本知识,并专注于MPS中的插科打s和半胱氨酸的组织蛋白酶的表达以及它们的相互作用,这可能导致与MPS相关疾病的发展。
摘要这项研究的目的是概述面部这种罕见的,侵入性真菌感染的可能表现或形式,将其从诊断到治疗进行比较。这是一项观察性的,描述性的病例类型研究,在该研究中,所有被诊断出具有真菌感染的病例,面对州长OtávioLage de Siqueira,Goi-Nia,GO,巴西GO,在巴西Goi-Nia。临床数据,并在每种情况下都评估了射线照相特征。所有病例均已通过显微镜进行修订,以确认诊断。3例通过粘膜症感染真菌感染的患者,女性为1例,男性为2例。均具有常见的临床表现:症状,上颌鼻窦炎,面神经障碍和广泛的区域坏死。通过微生物检查和计算机断层扫描进行了病例诊断性阐明。是通过多模式方法进行的,包括控制潜在的诱发因素,以理想剂量的早期给活性抗真菌剂施用,并完全去除任何受感染的组织。总之,粘核病感染很少见,侵入性且通常是致命的,生存率较低。它通常在免疫力受损的患者中,尤其是那些糖尿病代理的患者。关于这种涉及气隙系统的疾病的确定管理仍然存在文献稀缺。本文强调需要采用积极的多模式治疗方法来纠正潜在的诱发因素和早期诊断,以提供最佳的生存机会。关键词:机会性感染;粘膜症;糖尿病。
病例报告 一名 3 个月大的男婴被转诊到我们的门诊部进行免疫接种。该患者被诊断为 MPS 2 型 (MPS-T2)。病史报告称,该婴儿出生于一名 32 岁的母亲,妊娠 34 周,通过自然阴道分娩出生。他的一分钟和五分钟阿普伽评分分别为 5 分和 7 分。体格检查发现,孩子身材矮小,头骨增大,鼻梁低,面部粗厚,手短脚小。出院前,接种了第一剂乙肝疫苗。之后没有报告任何不良事件。建议父母进行常规体检,以评估孩子的生长发育情况,并按照提供的时间表继续免疫接种。
这项研究介绍了一种直接的方法,用于使用两光子激光打印制造3D微结构细胞粘附和固定的多质质量。与现有策略相比,这种方法提供了自下而上的分子控制,高可定制性以及快速,精确的3D制造。基于可打印的细胞粘合剂PEG材料包括通过固相肽合成合成的含RGD的肽,从而可以精确控制肽设计。明显地,足以赋予细胞粘附性的RGD肽(<0.1 wt%)的最小量,同时将3D打印的微结构中的机械性能保持在3D打印的微观结构中,以使细胞固定的基于PEG的基于PEG的材料的机械性能。RGD肽的荧光标记促进了其在细胞粘附区域中的存在。为了展示我们系统的广泛适用性,我们展示了细胞粘合剂2.5D和3D结构的制造,从而促进了这些体系结构中成纤维细胞的粘附。因此,这种方法允许打印高分辨率的真实3D结构,适用于各种应用,包括复杂环境中的细胞研究。