本文介绍了在标准 JEDEC 跌落可靠性测试板上对边缘粘合的 0.5 毫米间距无铅芯片级封装 (CSP) 进行的跌落测试可靠性结果。测试板在几个冲击脉冲下接受跌落测试,包括峰值加速度为 900 Gs,脉冲持续时间为 0.7 毫秒,峰值加速度为 1500 Gs,脉冲持续时间为 0.5 毫秒,峰值加速度为 2900 Gs,脉冲持续时间为 0.3 毫秒。使用高速动态电阻测量系统监测焊点的故障。本研究中使用的两种边缘粘合材料是 UV 固化丙烯酸和热固化环氧材料。对具有边缘粘合材料的 CSP 和没有边缘粘合的 CSP 进行了测试。报告了每块测试板上 15 个元件位置的跌落至故障次数统计。测试结果表明,边缘粘合的 CSP 跌落测试性能比无边缘粘合的 CSP 好五到八倍。使用染料渗透和扫描电子显微镜 (SEM) 方法进行故障分析。观察到的最常见故障模式是焊盘翘起导致线路断裂。使用染料渗透法和光学显微镜对焊料裂纹和焊盘翘起故障位置进行表征。
与焊接或锡焊相比,导热胶可以粘合铜和铝等难以粘合的材料组合。这些胶粘剂可填充缝隙,大面积导热,并且耐水、耐油或耐气。由于胶粘剂在室温或中等温度下固化,因此粘合过程中不会产生机械应力、不必要的变形或变色。
这本小册子旨在介绍粘合剂粘合的基础知识,并着眼于航空航天应用。只要有可能,本书都会结合航空案例来解释基础知识。书中讨论了飞机领域常用的粘合剂、所用材料(如铝或复合材料)的表面处理、飞机结构中常见的接头设计、制造方法以及疲劳等耐久性问题。书中的文字非常浅显易懂,并配有许多插图,方便读者理解书中介绍的概念。
本报告旨在定义目前船舶建造中尚未广泛使用的紧固工艺和技术,其适用性和改进船体结构和附件的成本、建造、可靠性和维护的潜力。研究包括相似和不相似的金属对金属和金属对非金属接头、典型 csl 紧固件的通用紧固器矩阵、紧固件安装设备和工艺、爆炸粘合材料的拟议应用以及与其他制造技术的成本比较。讨论了熔焊、扩散粘合、摩擦焊接和粘合剂粘合。图中包括几种紧固件标准和供应商专有紧固件。摘录自《船舶设计手册》中关于机械紧固和粘合剂粘合的部分作为参考附件。紧固系统和技术
确保孔隙率:表面必须清洁,完全没有灰尘,污垢,油漆,密封剂或任何可能干扰穿透或粘合的污染物。除非完全拆除,否则不适用于具有密封剂或债券断路器的地板。快速测试以帮助确定清洁,开放和吸收性混凝土使用水滴。如果未拉出和测试核心,此简单测试尤其重要。如果在准备好的地板上的几个位置放置在几个位置上的水滴在30秒内不容易吸收混凝土或向上珠子,则表面不足以吸收。在所有情况下,都需要在应用之前进行彻底的真空(带有灰尘封装过滤器)。在某些情况下可能建议用高压清洗机清洁。应使用合适的维修材料在重新Uprime MVB的顶部进行平整。
航天领域在运载火箭和卫星的建造中广泛使用粘合剂粘合。与许多其他领域的情况一样,粘合剂在这些应用中的使用与复合材料的使用密切相关。虽然在太空竞赛开始时,运载火箭和卫星主要由金属制成,但复合材料整体结构部件在 20 世纪 70 年代开始成为常态,取代了许多(但不是全部)金属结构。这种使用是由于环氧树脂与玻璃和硼纤维的结合,这提高了复合材料的强度和稳定性,尽管其使用仍然仅限于整流罩和支架等次级结构。在 20 世纪 80 年代,碳纤维的使用开始成为常态,并开启了复合材料在主要结构部件、整体结构或夹层板中的使用。如今,许多火箭包括完全粘合的复合材料级,用作储罐,将推进剂冷却至低温。其中一些应用如图 1.13 所示。
1. 提供所有劳动力、材料和设备 2. 将风暴损坏的屋顶拆除,只留下现有的混凝土甲板和所有金属 3. 按照规范使用低层泡沫粘合剂安装锥形聚异氰脲酸酯隔热层 4. 安装完全粘合的 60 密耳黑色 EPDM 屋顶系统,以匹配现有屋顶系统 5. 按照制造商的规格安装所有防水层 6. 制造并安装 24 号预制盖板/碎石挡板(如有必要) 7. 提供 15 年制造商无金额限制保修 8. 拆除主屋顶上现有的天线系统和相关物品并处理(HAJ 断开主电源)。注意(仅限约翰·肯尼迪总统) 9. 价格中包含起重机租赁费