在各种能量存储和转换材料中,功能化的天然粘土在能量存储和转换设备中显示出具有电极,电解质,分离器和纳米滤光器的明显电势。自然粘土具有多孔结构,可调的特定表面积,显着的热和机械稳定性,丰富的储量以及成本效益。此外,自然粘土具有高离子电导率和亲水性的优势,这是固态电解质的有益特性。本评论文章概述了基于天然的基于粘土的能源材料的最新进步。首先,它全面地总结了自然粘土的结构,分类和化学修饰方法,以使其适用于能量存储和转换设备。然后,特别注意的是在锂离子电池,锂 - 硫磺电池,锌离子电池,氯离子电池,超级电容器,太阳能电池和燃料电池的场中的应用。最后,将未来的研究方向用于自然粘土作为能量材料。本综述旨在通过无机和材料化学方面的富有成果的讨论来促进天然基于粘土的能量材料的快速发展,并促进了粘土基材料以其他利用的广泛领域,例如E uent治疗,重金属去除和环境补救。
a b s t r a c t最近逐步搜索用于电气应用的环保和可持续的材料,这是由于对有效,更绿色的解决方案的需求所刺激的。为了满足这些期望,一类有希望的材料称为粘土增强的再生塑料复合材料。提高机械强度,较少的热膨胀和较高的火焰耐药性都是将粘土纳米颗粒掺入回收塑料中的好处,这对于维持电气系统的可靠性和安全性至关重要。粘土增强的再生塑料复合材料已在包括电气的各种应用中使用。将废塑料成分(例如聚苯乙烯或高密度聚乙烯)与粘土(例如蒙脱石)结合使用,以使用冷压缩技术来创建复合材料。与原始塑料材料相比,所得的复合材料具有更好的机械,热和吸水特性。此外,已经表明,将粘土添加到复合材料中可以提高其电气质量,从而适合于电气应用。介电强度,介电常数和电导率测试均已用于评估复合材料的电性能。根据发现,粘土钢筋可回收的塑料复合材料可用于电气应用,例如电绝缘体的产生。利用这些复合材料可以帮助开发各种应用的可持续材料并减少塑料废物。
Anthill Clay是普通土壤类型中一种独特的土壤/粘土类型,因为具有非凡的储存方法。小颗粒被带入并用一个被称为白蚁的小生物竖起并竖立了一个arthill。通常,粘土是工业应用的明显原材料,并且对高级材料应用的Anthill Clay的高速公司的测定是现有研究的前景。使用标准程序和仪器在物理和化学上对精心收集的arthill粘土样品进行了表征。研究了从8000°C以下的Anthill粘土中制备的砖的机械特性。作为现有原始粘土研究的主要结果,pH值的5.56,天然水分含量的15%,差距分级和对称分布的谷物排列,颗粒百分比(<0.075mm)(<0.075mm)(<0.075mm)(<0.075mm)(<0.075mm)(根据Fe,Ti,ba和k的组成,Ti,ba和k andiption compounts的重量,包括fe Miners consepts complate consects conseptions coptosition。此外,观察到相对于从原泥粘土制备的砖,观察到25%的吸水,2.62个体积比重,65%的特异性重力,65%的显而易见的孔隙率,21 MPa抗压强度和0.4 MPa分裂的拉伸强度。基于这种肛门粘土的行为,在工业目的(例如水处理,刚性材料,催化剂和折射剂)中,它应该是高级材料制造中的有影响力材料。
摘要 - 本文基于现场实测案例,采用三维有限元法分析了软海洋粘土中深支撑基坑相邻桩群的响应。对由 2×1、4×1、8×1 和 8×2 桩组成且中心间距分别为 2d 和 3d 的桩群进行了数值研究。计算了最大桩弯矩的群系数,以研究桩直径、桩间距和桩数对群效应的影响。比较了两排桩群中中心桩和边缘桩以及前桩和后桩的群系数。本研究得出的结论可为考虑桩土相互作用和群桩效应的相邻基桩深支撑基坑设计提供指导。
摘要。我们评估了在蒙古某铜矿床环境中,一种新型系统像素清晰校准场在航空高光谱矿物测绘中应用的机会和性能。校准场旨在用于估计特定地质场景中单个像素中关键矿物的灵敏度和量化。校准场的布局由两种不同的含铜岩石样品、一种来自矿山的低铜含量岩石材料、来自矿山的尾矿材料和具有明确已知光谱特征的校准材料组成。样品材料的缩放覆盖范围旨在开发统计方法,以基于像素的方法量化航空调查中的目标矿物。数据收集包括使用地球化学、X 射线衍射以及微观和电子光栅微观方法描述校准材料。使用可见光和近红外机载传感器以及短波红外机载传感器,从六个高度多次重复收集校准场的数据。经过像元校正和大气校正后,对1400、1900、2200nm处黏土矿物的吸收特征进行了精确测量和统计分析,给出了覆盖率与吸收特征特别是在2200nm附近的相关性,以及飞行高度对探测灵敏度的影响和
质子传导是许多重要电化学技术的基础。报道了一类新型质子电解质:酸包粘土电解质 (AiCE),通过将快质子载体整合到天然层状硅酸盐粘土网络中制备而成,可制成薄膜(数十微米)的不透液膜。所选示例体系(海泡石-磷酸)在质子电导率(25°C 时为 15 mS cm −1,−82°C 时为 0.023 mS cm −1)、电化学稳定窗口(3.35 V)和降低的化学反应性方面在固体质子导体中名列前茅。使用 AiCE 作为固体电解质膜组装质子电池。得益于 AiCE 更宽的电化学稳定窗口、更低的腐蚀性和出色的离子选择性,质子电池的两个主要问题(气化和循环性)得到成功解决。这项工作引起了人们对质子电池中元素交叉问题和通用的“酸包粘土”固体电解质方法的关注,该方法具有超快质子传输、出色的选择性和改进的室温至低温质子应用稳定性。
利用骨料码头是提高和提高软土轴承能力的方法之一。这些码头的最终轴承能力受参数的影响,例如墩的物理特性,结构条件,墩的嵌入深度和piers的替换比,这使轴承能力的估计复杂化。在这项研究中,将基因表达编程方法用于预测用骨料码头增强的粘土土壤的最终轴承能力。For this purpose, two different models were developed, of which the first model (GEP2) utilized two input variables, the undrained shear strength of clay (S u ) and replacement ratio (a r ), while the second model (GEP4) used four input variables including the undrained shear strength of clay (S u ), replacement ratio (a r ), slenderness ratio (S r ), and embedment depth of码头(D F)。GEP2模型的确定系数和GEP4模型分别为0.921和0.942。此外,将该研究的GEP4模型与先前研究的开发模型进行了比较,证实了GEP4模型的出色性能,考虑到输入参数的准确性和数量。敏感性分析的结果表明,粘土(S U),替换比(A R),细长比(S R)和墩的嵌入深度(D F)的未排水剪切强度分别对轴承能力的预测具有最大的影响。此外,参数分析表明,增加S u,a r,s r和d f将提高骨料码头增强粘土的轴承能力。
天然粘土是一种具有各种好处并且在环境中丰富的材料。这项研究将研究来自印度尼西亚东爪哇的Tulungagung的天然粘土的特征。这项研究使用了来自Tulungagung的两个天然粘土-1(NC-1)和天然粘土2(NC-2)样本,贡登区Sidem村。在室温下将天然粘土干燥2天,然后使用100个网状筛粉碎和筛分。X射线衍射(XRD),X射线荧光(XRF),红外光谱(IR)和扫描电子显微镜(SEM)已用于表征自然粘土。XRF分析表明,Tulungagung天然粘土的主要成分是Fe,Si和Al。Montmorillonite,Quartz和Aratase是主要的天然粘土矿物。SEM的结果表示不均匀的材料表面。关键字:自然粘土;化学成分;矿物质含量;形态学
摘要:胶体粘土纳米片是通过由于其形状各向异性的形状晶体而在水中形成晶状体粘土矿物的分层晶体获得的。在液晶粘土纳米片上加载有机染料将启用新型的光子材料,其中负载染料的光函数由粘土纳米片的液晶度控制。然而,有机染料在纳米片上的吸附会使纳米片表面疏水,因此,纳米片的胶体稳定性丢失了。在这项研究中,通过将阳离子阳离子的染料染料夹在一对合成氟脱甲岩纳米片之间来克服这种缺点。这是通过制备Stilbazolium - 粘土第二阶段插入化合物,其特征是将染料阳离子插入Hectorite粘土的其他每个层间空间,在那里非中型的层间间空间由Na +离子占据。第二阶段的插入化合物是通过在所有层间空间中掺入Na +离子的母离子粘土矿物的部分离子交换获得的,并从Na +含有含有Na +的层间间空间分层,形成粘土纳米片,以夹层染料分子。染料 - 糖粘土纳米片的水性胶体形成胶体液晶,染料 - 丝晶液晶粘土纳米片对施加的交流电场做出反应,以平行于电场。粘土纳米片的电对准会诱导夹层sti菌分子的光吸收改变,这验证了构建粘土 - 有机杂交的刺激反应光子材料的策略。电场下染料 - 丝晶粘土纳米片的组装结构的特征是分配的离散粘土血小板,这与粘土纳米片的胶体液体晶体有些不同,而粘土纳米片的胶体液体均不具有染色器载荷,而没有巨型液体晶体域的特征,其特征在于宏观液体晶体域。■简介
本文研究了焚烧煤电厂煤底灰 (CBA) 废物中添加的砂粘土陶瓷的机械性能和热性能,以开发一种用于热能存储 (TES) 的替代材料。采用烧结或烧成法在 1000˚C 和 1060˚C 下开发陶瓷球。用压缩机压缩所得陶瓷,并使用 Decagon devise KD2 Pro 热分析仪进行热分析。还使用马弗炉在 610˚C 下进行热循环。发现 CBA 增加了孔隙率,从而使砂粘土和灰陶瓷的轴向拉伸强度增加到 3.5 MPa。选择了具有 TES 所需拉伸强度的陶瓷球。它们的体积热容量和热导率范围分别为 2.4075 MJ·m −3 ·˚C −1 至 3.426 MJ·m −3 ·˚C −1,热导率范围为 0.331 Wm −1 ·K −1 至 1.014 Wm −1 ·K −1,具体取决于沙子的来源、大小和烧成温度。所选配方具有良好的热稳定性,因为最易碎的样品经过 60 次热循环后也没有出现任何裂纹。这些特性使人们可以设想将陶瓷球用作聚光太阳能发电厂温跃层热能存储(结构化床)的填充材料。以及用于太阳能灶和太阳能干燥器等其他应用。