可选活动 大脑模型:让学生制作大脑模型。制作方法多种多样。创意包括粘土、橡皮泥、蛋糕、纸浆、手机等。另一个可能的想法是让学生用回收材料制作“绿色大脑模型”。(这也可以避免高成本)。学生可以在课堂上或课外项目中制作这些模型。在课堂上展示模型,并让各小组展示他们的设计。
为了研究采用所提出的吸附/混凝/过滤系统处理废水的可行性和机理,制备了由自来水、洗洁精、洗衣粉、肥皂、粘土、油和食物成分组成的合成废水。处理系统实验室优化研究选定的操作参数包括:废水的初始 pH 值和温度;碳吸附的接触时间;粉末碳的类型和剂量;聚合物的类型和剂量;
以下报告详细介绍了2023年在西弗吉尼亚州地质与经济调查(WVGES)的专业工作者(WVGES)期间开展的活动。从7月开始的一年开始意味着我们从Stactemap Bedrock地质映射开始如火如荼地开始,现场工作人员使穿越Greenbrier山谷的跋涉绘制了几个四边形,包括Asbury,Cornstalk和Lewisburg。在北部和西部的煤炭措施中,由美国地质调查局的地球MRI计划资助的地球化学侦察研究报告称,与Allegheny地层煤相关的粘土富含粘土的单位在诸如稀土元素之类的关键矿物质中始终富集。这些结果包含在一项八个州的区域研究中,该研究将作为WVGES的研究报告37发表,并进行了用于资助24财年的金属有机页岩的伴侣研究。地球化学数据将与地球MRI高分辨率辐射指定和磁性调查合成,并在从Morgantown South到Elkins到Elkins的空中样品上收集的磁性调查,并跨越东部Panhandle到Harpers Ferry。合并后,这些现代数据集为检查该地区的地质框架和矿产系统提供了无与伦比的机会。
拓扑的作用及其保存属性的能力,在这项工作中,可以比作咖啡杯如何被重塑成甜甜圈的形状;尽管在变形过程中外观和形状发生了变化,但奇异的孔——拓扑特征——保持不变。这样,这两个物体在拓扑上是等价的。“我们的光子之间的纠缠是可塑的,就像陶工手中的粘土一样,但在成型过程中,一些特征被保留了下来,”福布斯解释说。
‘我们很高兴在本周在Dyson Gardens和Kitts Green举行的家庭中心启动活动中看到225多人。我们提供了许多活动,包括粘土雕刻,讲故事和冰沙制作,人们似乎真的很喜欢。最重要的是,他们必须会见基于枢纽的员工和专业人士,以帮助他们。我们期待在未来几个月内,随着我们建立和发展我们的服务,我们都可以帮助更多的家庭 - 欢迎所有人!”
路面分为刚性路面和柔性路面两种。柔性路面由四个部分组成,即路基、底基层、基层和面层。柔性路面基层的道路建设中使用水结碎石和湿拌碎石。与传统的水结碎石相比,用 WMM 建造的柔性路面施工速度更快,更耐用。本研究的目的是比较 WMM 中使用的各种细材料的工程参数。用于比较的材料是土、石粉、沙子、粘土和粉煤灰。这样做是为了找出哪种细材料最适合 WMM 建设。对各种 WMM 混合物进行了重型压实试验、CBR 试验和渗透性试验。重型压实试验表明,与其他 WMM 组合相比,含石粉的 WMM 具有最高的最大干密度,而含粉煤灰的 WMM 具有最高的最佳含水量。 CBR试验表明,在研究中使用的所有细粒材料中,添加石粉的WMM具有最高的CBR值。渗透性试验表明,添加沙子的WMM具有最大的渗透系数值,而添加粘土的WMM具有最小的渗透系数值。
摘要在水基钻孔操作过程中,页岩肿胀的发生对页岩地层的稳定性构成了重大挑战。粘土层膨胀是页岩肿胀的主要原因,这是由于粘土矿物质和钻孔液成分之间的相互作用而引起的。膨胀程度由诸如粘土组成,离子交换过程,渗透压,离子强度,温度和压力等变量确定。因此,本研究探讨了各种页岩肿胀抑制剂,并精心研究了基本机制。常规抑制剂的有效性,例如氯化钾(KCL),氯化铵(NH 4 Cl)和基于胺的抑制剂。但是,重要的是要注意,这些抑制剂确实有一定的局限性。因此,目前的工作研究了一系列环保抑制剂,包括氧化石墨烯,离子液体,深层共晶溶剂,纳米颗粒,纳米复合材料和生物表面活性剂。氧化石墨烯在缓解页岩肿胀并产生广泛的,不间断的防护涂层方面具有显着的功效。与KCL相比,由1-丁基-3-甲基咪唑醛(BMIMCL)代表的离子液体表现出增强的抑制特性,导致膨润土肿胀率降低了19.38%。 此外,已经观察到,诸如nades之类的深层共晶溶剂(DESS)具有明显的抑制特征,导致粘土样品中肿胀率降低了49.1-62.8%。离子液体表现出增强的抑制特性,导致膨润土肿胀率降低了19.38%。此外,已经观察到,诸如nades之类的深层共晶溶剂(DESS)具有明显的抑制特征,导致粘土样品中肿胀率降低了49.1-62.8%。纳米复合材料涉及单壁碳纳米管(SWCNT)和聚乙烯基吡咯烷酮(PVP)的整合,已经成功地缓解了页岩肿胀和调节流体损失。 此外,生物表面活性剂,例如壳聚糖 - 诱发的L-精氨酸,亚麻籽蛋白(FP)和亚麻籽粘液(FM),它们作为页岩抑制剂具有潜力,它们都是可生物降解和环保友好的页岩抑制剂。 这些发现有助于持续的努力,以改善钻探操作的环境可持续性并遵守严格的环境保护标准。 然而,在广泛使用之前,需要进行更多的调查,完善和实际应用分析。 关键字:水基钻孔液,页岩形成,页岩肿胀,抑制剂,环保纳米复合材料涉及单壁碳纳米管(SWCNT)和聚乙烯基吡咯烷酮(PVP)的整合,已经成功地缓解了页岩肿胀和调节流体损失。生物表面活性剂,例如壳聚糖 - 诱发的L-精氨酸,亚麻籽蛋白(FP)和亚麻籽粘液(FM),它们作为页岩抑制剂具有潜力,它们都是可生物降解和环保友好的页岩抑制剂。这些发现有助于持续的努力,以改善钻探操作的环境可持续性并遵守严格的环境保护标准。然而,在广泛使用之前,需要进行更多的调查,完善和实际应用分析。关键字:水基钻孔液,页岩形成,页岩肿胀,抑制剂,环保
将纳米技术集成到建筑行业,特别是在开发沥青和混凝土路面材料方面,具有增强基础设施性能和耐用性的巨大希望。 纳米材料的特征是其纳米级尺寸(通常小于100纳米)在人行道结构中越来越多地使用。 此摘要概述了各种纳米材料及其对道路建设的潜在影响。 在这种情况下,纳米材料等纳米材料,纳米粘土,碳纳米管,纳米碳黑色,纳米纤维,纳米纤维,纳米二氧化钛,纳米氧化铝和诺米氧化铝和氧化纳米锌。 这些材料由于其尺寸较小和表面积高,提供了独特的特性。 例如,纳米二氧化硅已经证明了其增强刚度,强度,寿命和抵抗力的能力,可在沥青路面中脱落和破裂。 纳米粘土增强了沥青和混凝土中的机械和热性能,从而提高了整体性能。 碳纳米管和石墨烯通过增强机械性能和减少裂纹而在混凝土路面中显示出希望。 此外,正在为人行道表面探索纳米涂料,从而提供诸如改善的滑动阻力,降低噪音,耐用性的提高和污染性的益处。 尽管存在潜在的优势,但仍存在挑战,包括对标准化测试和表征程序的需求以及将纳米颗粒纳入路面材料的初始成本。 关键字:工程,纳米材料,道路构建,技术简介将纳米技术集成到建筑行业,特别是在开发沥青和混凝土路面材料方面,具有增强基础设施性能和耐用性的巨大希望。纳米材料的特征是其纳米级尺寸(通常小于100纳米)在人行道结构中越来越多地使用。此摘要概述了各种纳米材料及其对道路建设的潜在影响。纳米材料等纳米材料,纳米粘土,碳纳米管,纳米碳黑色,纳米纤维,纳米纤维,纳米二氧化钛,纳米氧化铝和诺米氧化铝和氧化纳米锌。这些材料由于其尺寸较小和表面积高,提供了独特的特性。例如,纳米二氧化硅已经证明了其增强刚度,强度,寿命和抵抗力的能力,可在沥青路面中脱落和破裂。纳米粘土增强了沥青和混凝土中的机械和热性能,从而提高了整体性能。碳纳米管和石墨烯通过增强机械性能和减少裂纹而在混凝土路面中显示出希望。此外,正在为人行道表面探索纳米涂料,从而提供诸如改善的滑动阻力,降低噪音,耐用性的提高和污染性的益处。尽管存在潜在的优势,但仍存在挑战,包括对标准化测试和表征程序的需求以及将纳米颗粒纳入路面材料的初始成本。关键字:工程,纳米材料,道路构建,技术简介正在进行的研究和发展工作重点是应对挑战,并使这些创新更加实用,更具成本效益,以实施广泛的实施。纳米材料已成为改善道路建设的可行解决方案,为基础设施性能提供了好处,同时最大程度地降低了环境影响。
在1992年,约翰和朱迪·惠特科姆(Judy Whitcombe)慷慨的土地使学校能够搬到目前的5英亩土地。校园和建筑物经过精心设计,以与景观的生态和华尔道夫教育原则进行协调。我们下年级教室中最独特的特征之一是内壁上使用的撞泥土。由加利福尼亚原住民粘土形成,墙壁上旋转的层是艺术品的整体作品,鼓励了与地球的联系感。