图4球体行为作为球间距离的函数。(a)球体间距离的球体融合的示意图(I. D.)。(b)球体区域的散点图是囊中距离的函数,用于封装在缓慢松弛(SR)或快速放松(FR)水凝胶中,在无PDGF(PDGF)或PDGF取消( + PDGF)( + PDGF)培养基中培养长达5天。水平和垂直虚线分别表示平均球体面积和平均接触球体的平均球间距离分别在第0天。黄色和紫色点表明分别与至少一个相邻球体直接接触(融合)的球体。所有球体由小鼠骨髓MSC组成。数据点代表单个球体,基于n = 178 - 939个球体,每组分析了三到四个生物学独立的实验。
这项研究旨在研究以各种混合比在其FTIR,DSC,稳定和动态的流变学特性,粘贴在贡献,协调性,协调性和粒度分布的特征上,以各种混合比以各种混合比以各种混合率掺入小麦淀粉(WS)中的影响。WS和LPSG之间的相互作用纯粹基于氢键。发现,富含LPSG的混合物的开始(T O)和峰(T P)温度分别增加了10%和8%,而与WS相比,焓(δH)的温度分别降低了70%。较高的LPSG比率导致储存模量(G')的频率依赖性降低,并增加了混合物的假塑性。内剪切结构回收试验表明,恢复率(R,%)随LPSG比的增加而增加。粘贴结果表明,9/1的比率具有最高的最终粘度和最低的相对分解。使用1到5个冻融周期,与WS相比,9/1混合比分别导致了50%至70%的交织率降低。与WS相比,LPSG掺入WS中会导致更高的静态和动态大小的屈服应力以及粒径的增加。
摘要:干细胞,尤其是人IPSC,构成了组织工程的强大工具,尤其是通过球形和器官模型。很好地描述了干细胞对其直接微环境的粘弹性特性的敏感性,但干细胞分化仍然取决于生化因素。我们的目的是研究HIPSC球体直接环境在命运中的粘弹性特性的作用。为了确保仅由机械相互作用驱动细胞生长,可在无分化因子培养基中使用具有显着不同粘弹性特性的可生物固定藻酸盐 - 凝集素水凝胶。开发了不同浓度的藻酸盐 - 凝集素水凝胶,以提供具有显着不同机械性能的3D环境,范围从1到100 kPa,同时允许可打印。通过聚集(= 100 µm,n> 1×10 4)制备来自两个不同细胞系的HIPSC球体,在不同的水凝胶中包括并培养14天。虽然密集水凝胶中的球体表现出有限的生长,而不论配方如何,但用液态液乳液法制备的多孔水凝胶显示出球体形态的显着变化和随着水凝胶机械性能的函数的显着变化。横向培养物(相邻球体含有藻酸盐 - 凝集素水凝胶)清楚地确定了每个水凝胶环境对hipsc球体行为的单独影响。这项研究是第一个证明机械调制的微环境会导致不同的HIPSC球体行为而不会影响其他因素。它允许人们设想多个公式的组合来创建一个复杂的对象,其中HIPSC的命运将由其直接微环境独立控制。
全球变暖的问题是最重要的现代科学问题之一。二氧化碳的排放是导致地球气候全球变化的原因之一。在深层地层中二氧化碳的地质存储被认为是将温室气体排放减少到大气中的关键跨度方法,因此它们对气候的反馈。这种方法已在与增强的石油回收相关的应用中使用了几十年。正在进行许多工业,示范和试点项目,与地质二氧化碳存储相关的过程和技术在理论上和实验研究中进行了研究。深盐水地层是地质单位,由于其全球分布,估计具有最高的存储潜力。在此类形成中建模和监视CO2存储的方法正在世界许多地方迅速发展。此类过程建模的基本假设是,在二氧化碳注入后,地层内的空隙空间被两种流体占据:天然盐水和注入的二氧化碳[1]。两相模型也用于描述产生气场的CO2固相。在[2]中,位于河流沉积盆地(意大利)中生产的气体中的三个注入井的CO2固相情景以了解二氧化碳注入的地质力学后果的最终目标进行了建模。从地质力学的角度分析了该过程,其中解决了以下主要问题:预测地球可能的垂直升高以及对表面基础设施的相应影响;评估储层中引起的应力状态,并可能形成裂缝,并分析现有断层的激活风险。
抽象的人皮肤及其潜在的组织构成粘弹性培养基,这意味着11个变形不仅取决于当前施加的力,还取决于最近的12个历史。这种物理记忆对自然手工使用期间一阶触觉13神经元的信号传导的程度尚不清楚。在这里,我们检查了过去14个负载对快速适应(FA-1)和缓慢适应(SA-1和SA-2)的响应的影响,第一阶15触觉神经元将人填充对载荷施加到施加到不同方向上的载荷16代表对象操纵任务的载荷。我们发现上述载荷中的变化17伴有力方向的神经元的总体信号传导。有些神经元一直信号传达了当前的18个方向,而另一些神经元则既发出了当前和前面的方向,否则主要是前面的方向。此外,负载之间的SA-2神经元中的持续脉冲活性20表示与FifeFertip的粘弹性变形状态有关的信息。我们得出的结论是,在人群级别上的21个触觉神经元信号是关于FiffifeTip的22个粘弹性变形态的连续信息,该信息是由其最近的历史和当前负载所塑造的。这样的23个信息可能使大脑正确地解释当前力量加载并帮助24个计算准确的电动机命令,以与操作和触觉25个任务中的对象进行交互。26
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2024 年 12 月 25 日发布了此版本。;https://doi.org/10.1101/2024.12.24.630289 doi:bioRxiv 预印本
本论文由 MavMatrix 机械与航空航天工程系免费提供给您,供您开放访问。它已被 MavMatrix 的授权管理员接受并纳入机械与航空航天工程论文。如需更多信息,请联系 leah.mccurdy@uta.edu、erica.rousseau@uta.edu、vanessa.garrett@uta.edu。
大规模量子计算的最有前途的方法之一使用了基于许多约瑟夫森连接的设备。,即使在今天,有关单个连接点的开放问题仍然尚未解决,例如对量子相变的详细理解,约瑟夫森连接到环境的耦合或如何改善超导量子的相干性。在这里,我们设计并建立了连接到约瑟夫森连接处的芯片储层的设计和建造,该芯片连接起了一个有效的钢计,用于检测在非均衡性下,即有偏见的条件下的约瑟夫森辐射。验证仪转换A.C. Josephson电流在微波频率下,高达约100 GHz的温度升高,该温度升高。温度法。基于现实参数值的电路模型同时捕获当前 - 电压特性和测量功率。本实验证明了微波光子的有效,宽,热检测方案,并提供了超出标准电导测量值之外的约瑟夫森动力学的敏感检测器。
其他心肌病表型(限制性疾病,扩张性心肌病,非特异性心肌病)以及很少与肿瘤,促炎,短暂性肌肉拨动 - 拨号盘增厚或严重的全身性炎症有关。2,5,6其他心肌病中的下ate发病率可能是由于与HCM相比,而不是真正的降低风险,可能是由于不常见的原因。这些血栓形成(TE)通常在主动脉三杆菌中寄养,或者不太常见的是在右锁骨下动脉中,引起缺血,剧烈疼痛,寒冷的肢体和受影响肢体的减少。1,7个血栓也已在肠系膜血管,儿童,大脑和肺部中检测到。8,9由于相关的发病率高,高死亡率在7天时高达55.9%,据报道的安乐死率最高为90%。1,5对于那些生存的人,那里
本研究探索了粘弹性湍流中自由悬浮的有限尺寸纤维的动力学。对于悬浮在牛顿流体中的纤维,Rosti 等人确定了两种不同的拍动方式(Phys. Rev. Lett.,第 121 卷,第 4 期,2018 年,044501):一种由流动的时间尺度主导,另一种由与其固有频率相关的时间尺度主导。我们在这项研究中探索了纤维动力学如何受到载体流体弹性的影响。为此,我们在参数空间中对双向耦合纤维-流体系统进行直接数值模拟,该参数空间涵盖不同的 Deborah 数、纤维弯曲刚度(柔性到刚性)以及纤维与流动之间的线密度差(中性浮力到密度大于流体的纤维)。我们研究了这些参数如何影响各种纤维特性,例如拍打频率、曲率以及与流体应变和聚合物拉伸方向的对齐。结果表明,中性浮力纤维根据其柔性,会随着流动而发生大时间尺度和小时间尺度的振荡,但随着聚合物弹性的增加,较小的时间尺度会受到抑制。聚合物拉伸对密度大于流体的纤维没有影响,当其柔性时,它会随着流动而发生大时间尺度的拍打,而当其刚性时,它会以其固有频率拍打。因此,当纤维呈中性浮力时,特征弹性时间尺度具有次要影响,而当纤维变得更具惯性时,其影响则不存在。此外,我们还探索了纤维的弯曲曲率及其与流动的优先对齐,以确定粘弹性在改变耦合流体结构动力学中的其他作用。惯性纤维的曲率较大,对聚合物存在的反应较弱,而中性浮力纤维则表现出定量变化。密度较大的纤维的可察觉的被动性再次反映在它们优先与聚合物拉伸方向对齐的方式中:与聚合物拉伸方向相比,中性浮力纤维与聚合物拉伸方向的对齐程度更高。