使用SN-3AG-0.5 Cu合金将BI 0.5 SB 1.5 TE 3热电(TE)元件直接焊接到Cu电极。界面是声音,粘结强度令人满意(8.6 MPa)。然而,在150 C的高温存储(HTS)测试中,焊料层迅速耗尽了300 h和600 h,粘结强度大幅降至1.5 MPa。通过在TE元件上的电压层电压层进行电镀,尽管导致低粘结强度为1.9 MPa。在BI 0.5 SB 1.5 TE 3元件上添加富含SN的薄膜和Ni屏障层导致高粘结强度为12.1 MPa,仅在150°C的HTS可靠性测试1000 h后仅略微降低。 BI 0.5 SB 1.5 TE 3 / CU接头的声音接口即使在175 C下HTS后仍保持其稳定性1000 h。
在炼铁过程中,高炉是还原铁矿石的多相反应器。在此过程中,铁矿石和焦炭从炉顶装入,高温还原气体从炉底引入。随着气体上升,还原并熔化铁矿石,在粘结带中形成液态铁和炉渣。液体渗透过焦炭床到炉缸。在铁矿石的还原过程中,矿石软化,矿层被堆积的炉料压缩。众所周知,由于粘结带中矿石软化引起的结构变化对炉内气体渗透性有很大影响。矿石的软化行为受各种因素的影响,例如化学成分、还原气体成分、温度、物理性质等。为了了解粘结带,已经进行了几项实验来研究炉料的高温性质 1-6) 以及气体流动对粘结带中液体流动的影响
本研究首次研究了通过选择性激光熔化 (SLM) 直接在由 SLM 生产的 IN625 基体上生产 NiCrAlY 粘结涂层材料的可行性。通过改变激光功率 (P) 和扫描速度 (v) 进行了典型参数优化。对 15 种不同的 P/v 条件进行了单线扫描轨迹和双层涂层分析。定义了几个标准来选择合适的 SLM 参数。结果表明,底层基体发生了明显的重熔,这是 SLM 制造的典型特征。这导致了中间稀释区的形成,其特征是 IN625 高温合金基体和 NiCrAlY 粘结层之间发生了大量混合,表明冶金结合优异。最佳加工条件为 P = 250 W 和 v = 800 mm/s。它产生了一个致密的 242 μm 厚的粘结层,其中包括一个 36% 的稀释区。 SLM 加工的 <NiCrAlY- IN625> 系统呈现出平滑的显微硬度分布,从粘结层的 275 Hv 略微增加到基材的 305 Hv。在系统中发现相之间的 Al 浓度分布逐渐增加,残余应力水平较低。这表明 SLM 可能是一种有价值的替代制造工艺,用于粘结层系统,从而促进高温应用中的出色附着力。
目的:研究基质金属蛋白酶(MMPs)抑制剂在体内对自酸蚀粘合剂中树脂复合材料与牙本质微拉伸粘结强度的影响。对象和方法:研究纳入九只成年杂种犬。在狗口的上下颌(犬齿 - 第一和第二磨牙)共制备90个标准化I类腔。根据使用的MMP抑制剂类型将牙齿分为三组(n = 30):对照组(不使用MMPs抑制剂),CHX组(2%葡萄糖酸氯己定,Kempetro,ARE)和EDTA组(乙二胺四乙酸,META BIOMED,CO.LTD,韩国)。每组根据测试期6个月和12个月又分为两个亚组(n=15)。在每个测试期结束时,处死动物,然后将牙齿与颌骨分离。将每颗牙齿安装到切割机上,在水冷条件下切成一系列1mm厚的板。使用万能试验机测量每个样品的微拉伸粘结强度。将数据制成表格并进行统计分析。结果:微拉伸粘结强度结果显示,6个月后,CHX的数值明显高于EDTA,而12个月后,CHX的数值明显低于EDTA和对照组。结论:使用EDTA可提高12个月老化后的微拉伸粘结强度,而CHX和对照组的粘结强度随年龄增长而降低。
粘结曲线或令牌键合曲线(TBC)是将令牌价格与其供应相关联的数学功能。它用于确定代币的买卖价格,使其成为自动化的做市商,提供持续的流动性。与传统资产评估机制相比,粘结曲线的主要优点是每个阶段对资产评估的透明度和明确的,不可变的定义。
热键合(TSB)是一种模具到die的键合方法,它在粘结过程中将新型的热压缩键合与超声波(美国)焊接结合在一起,因此,在微电子粘结应用中使用了每种质量的最佳质量。最初,TSB主要用于电线键合技术[1]。我们引入的引入通过降低在半导体制造中非常有吸引力的施加的粘结压力和温度来增强键合过程。Flip-Chip键合是针对区域阵列连接的一种无焊的模具到die键合技术(图1)。该方法用于将ICS底部的一系列金色凸起(图2)连接到基板上的镀金垫上。通常使用热压缩键合法[2],这是一个简单,干净且干燥的组装过程。纯热压缩键合通常需要> 300°C的界面温度[2,3]。此温度会损坏包装材料,层压板和一些敏感的微芯片[4]。这种下一个级别的键合解决方案在翻转芯片键合中非常有利,因为界面温度和粘结力通常可以低得多。分别在100至160°C和20和50g/ bump之间[2]。
成本降低是最近向CU线键合的主要驱动力,主要是AU线粘结。包装的其他成本降低来自基板和铅框架的新开发项目,例如预镀框(PPF)和QFP和QFN的UPPF降低了镀层和材料成本。但是,由于粗糙的smface饰面和薄板厚度,第二个键(针键键)在某些新的LeadFrame类型上可能更具挑战性。pd涂层的Cu(PCC),以通过裸铜线改善电线键合工艺,主要是为了提高可靠性并增强了S TCH键过程。需要进行更多的FTMDAMENTALS研究来了解粘结参数和粘结工具的影响以提高针迹键合性。在本研究中研究了Au/Ni/pd镀的四型扁平铅(QFN)PPF底物上直径为0.7 mil的PCC电线的针键键过程。两个具有相同几何形状但不同的s脸的胶囊用于研究Capillruy Smface饰面对针键键过程的影响。两种毛细血管类型是一种抛光的饰面类型,用于AU线键合,而颗粒•饰面毛细管具有更粗糙的smface fmish。比较铅(NSOL)ATLD SH01T尾巴之间的过程窗口。研究了过程参数的影响,包括粘结力和表SCMB扩增。过程窗口测试结果表明,颗粒毛细管具有较大的过程窗口,并且SH01T尾巴OCCTM的机会较低。在所有三个Pru·emeter套件中,颗粒状的毛细血管均显示出更高的粘结质量。较高的SCMB振幅增加了成功SS的机会 - 填充针键键的fonnation。ftnther比较了毛细血管smface饰面,3组参数se ttings ttings ttings ttings具有不同的键atld scmb a振幅ru·e测试。与抛光类型相比,Grrumlru·capillruy产生了更高的针迹拉力强度。开发了该过程的有限元模型(FEM),以更好地了解实验性OB使用。从TL1E模型中提取了电线和亚种界面处的电线的Smface膨胀(塑性脱节),并归因于粘附程度(键合)。该模型用于与不同的Smface饰面相连(键合)的实验观察。