目的:黏膜粘附聚合物已成为药物输送系统领域的关键组成部分,尤其是在结肠靶向治疗中。这些聚合物具有粘附性,使其能够与黏膜表面形成暂时性粘合,从而延长药物与结肠黏膜的接触时间。本综述全面概述了结肠药物输送系统的黏膜粘附聚合物。天然聚合物(如壳聚糖和海藻酸盐)以及合成聚合物(如聚丙烯酸衍生物)可用于这些系统。黏膜粘附聚合物的优势在于它们能够促进位点特异性药物输送,从而最大限度地减少全身副作用,并能够控制和持续释放药物以提高生物利用度。尽管有这些好处,但必须解决包括黏膜条件多变和生物相容性迫切需要等挑战。粘膜粘附聚合物的应用涵盖多种医疗条件,包括针对炎症性肠病的抗炎药物靶向输送、结肠癌治疗的化疗药物局部给药以及结肠感染的抗生素精确输送。结果与讨论:作为优化结肠药物输送的一种有希望的途径,粘膜粘附聚合物为开发有效且耐受性良好的各种结肠疾病治疗方法提供了巨大的潜力。关键词:结肠、结肠药物输送系统、粘膜、粘膜粘附、粘膜粘附聚合物
中性粒细胞对于保护宿主免受入侵病原体至关重要,但可以通过遵守整个人体周围组织中炎症的微血管网络来促进镰状细胞病(SCD)的疾病进展。在炎症反应期间,白细胞使用Selectin粘附分子从血液中外出外出,并通过激活整联蛋白而迁移到组织损伤部位,而整联蛋白对于对抗病原体必不可少。然而,在与SCD相关的血管结合期间,在链接和滚动的链球上,嗜中性粒细胞被激活,在被激活的内皮细胞上上调的selectecon蛋白上,该线血管上调。最近,我们报道了中性粒细胞滚动过程中e-选择蛋白对L-选择蛋白对L-SELECTIN的识别,会引发抗剪切力的抗力量粘结键,从而促进链接到内皮和激活整合蛋白键簇,从而将细胞锚定在容器壁上。证据表明,阻止这种重要的信号传导级联反应可防止微脉管系统中的充血和缺血,这是由于中性粒细胞捕获镰状红细胞的捕获而发生的。最近完成了针对选择蛋白的疗法的两项临床试验及其对小血管中嗜中性粒细胞激活的影响揭示了机械调节的重要性,即在健康中是一种免疫适应性,可促进快速和比例的白细胞粘附,同时维持组织灌注。我们及时提供了对血管核危机(VOC)的机制的及时观点,其重点是针对靶向选择素介导的整联蛋白粘附粘合键形成的新药。
成熟的哺乳动物皮质由6个结构和功能上不同的躺物组成。该分层结构组装的两个关键步骤是胶质支架的初步建立以及随后将有丝分裂后神经元迁移到其最终位置。这些过程涉及神经细胞与底物的粘附和脱离的精确和及时调节。尽管对神经元迁移过程中粘合剂的作用和神经胶质支架的形成知之甚少,但了解这些信号如何解释和整合在这些神经细胞中。在这里,我们提供了体内证据,表明CAS蛋白是一个细胞质适配器家族,在皮质层压过程中起功能和冗余作用。CAS三重条件敲除(CAS TCKO)小鼠表现出严重的皮质表型,具有鹅卵石畸形。分子上毒和遗传实验表明,CAS蛋白在跨膜dystroglycan和β1-1-整合素的下游以径向神经胶质细胞自主的方式作用。总体而言,这些数据在形成皮质电路期间为CAS适配器蛋白创建了新的和重要的作用,并揭示了控制皮质支架形成的信号轴。
•昆士兰大学旅游业教授鲍勃·麦克凯尔(Bob McKercher)•塔斯马尼亚大学旅游业教授安妮·哈迪教授•伯明翰大学营销教授斯科特·麦卡比(Scott McCabe)教授,伯明翰大学,共同编辑,主要旅游研究主席:我们鼓励与会者阅读并反思下面列出的这些简短读数,以在本次会议中获得最大的收益。Elangoven&Hoffman(2019)在学术界追求成功:柏拉图的幽灵问“那又怎样呢?”管理杂志,1-6 https://doi.org/10.1177/1056492619836729 Benjamin,S.,Lee,K。S.,&Boluk,K。(2024)。狗屎必须改变,对吗?在旅游业中寻求“好麻烦”的呼吁。旅行研究杂志,https://doi.org/10.1177/00472875241276542 Gard-McGehee,N。(2024)。共同编辑的信:是的,“狗屎必须改变。”但是如何?呼吁深入的奖学金社会运动。旅行研究杂志,https://doi.org/10.1177/00472875241288510 Dolnicar,S。(2024)不喜欢出版或灭亡文化?您只有两个选项:加油或抗拒。您会选择哪个?旅游研究年鉴(观点),https://doi.org/10.1016/j.annals.2024.103865 11:00 - 11:30早晨茶点
人们已经使用各种方法在微米和纳米尺度上研究了二维材料的黏附性能,研究了材料与金属和氧化物基底的黏附性能,以及二维材料之间的黏附性能。[5–7] 特别是,纳米机械原子力显微镜 (AFM) 技术已被用于直接测量石墨烯和针尖材料之间的相互作用。[8,9] 在用石墨材料涂覆 AFM 针尖方面取得的进展不仅提高了耐磨性和电性能,[10–14] 而且还为探测二维材料之间的层间相互作用提供了可能性。 Li 等人对约 10 纳米石墨包裹的 AFM 针尖与 MoS 2 和 h-BN 薄片之间的黏附性能进行了定性比较。[15] 使用针尖附着的二维晶体,Rokni 和 Lu 最近
摘要我们试图研究Ebastine(EBA)的效用,Ebastine(EBA)是一种具有有效抗中转移术的第二代抗组胺药,在乳腺癌干细胞(BCSC) - 抑制三重阴性乳腺癌(TNBC)中。EBA与局灶性粘附激酶(FAK)的酪氨酸激酶结构域结合,阻断Y397和Y576/577残基的磷酸化。FAK介导的JAK2/STAT3和MEK/ERK信号在EBA挑战在体外和体内受到了减弱。EBA治疗诱导的凋亡和BCSC标记ALDH1,CD44和CD49F的表达急剧下降,这表明EBA靶向BCSC样细胞群体,同时减少肿瘤的体积。EBA给药显着阻碍了BCSC富含的肿瘤负担,血管生成和远处转移,同时降低了体内循环血液中的MMP-2/-9水平。我们的发现表明,EBA可能代表了JAK2/STAT3和MEK/ERK同时靶向的有效治疗方法,用于治疗分子异质TNBC具有不同的特征。有必要进一步研究EBA作为治疗TNBC的抗转移剂。
•安全:PSA磁带不需要特殊的危险材料处理协议。•组装优化:PSA提供几乎立即的绿色强度,并以微秒而不是数小时或几天测量的治愈时间。磁带在组装时也可以将零件固定在适当的位置。•一致性:PSA在应用时提供一致的厚度。每个电池组都来自组装,其粘合剂的粘合度与其他每个包装都相同。•多功能性:PSA磁带可以层压到泡沫,纤维和胶片,并模切为规格。粘合剂可以使用可增强其易用性(例如易于可移动性/重新定位性),长期耐用性和阻力性的特性进行设计。
术语“我们”,“我们的”,“埃克森美孚化学”和“埃克森美孚”都用于方便,并且可能包括任何一个或多个埃克森美孚化学公司,埃克森美孚公司或任何直接或间接的隶属关系。管理该指南的每个关联公司或其他本地实体保留在其国家或运营领域采用和实施此指南的最终责任。每个会员或其他本地实体都选择根据其适当的决策程序采用和实施此指南。本文档中讨论的工作关系并不一定代表报告连接,而是反映了功能指导,管理或服务关系。本文件考虑了股东对地方实体问题的考虑,对地方实体的责任仍然存在。本文档中没有任何内容旨在覆盖本地实体的公司分离。
线是由贻贝足分泌的液态贻贝足蛋白 (Mfps) 产生的。这些 Mfps 由腺体通过注塑反应组装和制造。[3] 贻贝的足压在表面形成真空室,从而推动流体 Mfps 的输送。据信,局限于斑块中的 Mfps,例如 Mfp-2、Mfp-3、Mfp-4 和 Mfp-5,在暴露于盐水时会形成凝聚层。所有 Mfps 都含有翻译后氨基酸 DOPA,而 mfp-5 含有最大浓度的 DOPA 残基(30 mol%)并导致强粘附。 [4] 据报道,MFP 的凝聚以多种方式发生,例如由静电相互作用驱动的复杂凝聚,如 MFP-131 和 MFP-151 的聚离子中所揭示的那样,[5] 以及由静电和/或疏水力驱动的自凝聚,如 MFP-3S 中所揭示的那样。[6]
黏膜粘附药物输送系统 (MDDS) 是一种将药物输送到目标部位的智能方法。在 MDDS 中,黏膜和聚合物类型在黏膜粘附现象中起着至关重要的作用。为了解释黏膜粘附背后的机制,人们提出了各种理论,例如电子、吸附、润湿、扩散和断裂理论。MDDS 对某些特定患者有益,尤其是儿科和老年患者。在为这些特殊患者群体开发任何输送系统时,都会面临若干挑战,例如掩味、剂量确定、剂型吐出、目标输送、药物的生物利用度、药物不良反应、毒性等。考虑到这些挑战,一些研究人员试图设计和制定 MDDS。本综述重点介绍黏膜粘附的基本概述、黏膜粘附的各种理论以及黏膜粘附聚合物。本综述的后半部分重点介绍儿科和老年患者的 MDDS 及其重要性。我们还讨论了针对老年人和儿科人群的不同专利配方和活跃的临床试验。