隶属关系DWS,DRS,KO,MKM,BK,BK,MP,NH:华盛顿大学生物医学工程系,圣路易斯·麦克凯尔维工程学院,圣路易斯,密苏里州圣路易斯,63130 JG,GR:机械工程与材料系,机械工程与材料系,华盛顿大学,麦克基尔维·麦克基尔维,莫尔维斯,莫斯,莫斯,洛伊斯·莫斯,洛伊斯,MO 631311:博士,美国63130,美国63130的生物医学工程助理教授One Brookings Drive,Whitaker Hall,290d,Saint Louis,密苏里州。电话:314-935-3534电子邮件:nhuebsch@wustl.edu
摘要:Sporothrix Schenckii是孢子形成的病因学药物之一,孢子形成是一种皮肤和皮下感染。与其他与其他相关的真菌一样,其细胞壁是一种分子支架,用于显示毒力因子,例如保护性色素,水解酶和粘附素。具有粘合特性的细胞壁蛋白已被报道,但仅鉴定并表征了其中的少数。 其中之一是GP70,这是一种大量的细胞壁蛋白,主要在酵母样细胞的表面上发现。 由于该蛋白质在3-羧基,顺式 - 摩酸环化酶的活性中也具有作用,并且其丰度在高毒性菌株中较低,因此其在Sporothrix - 主机相互作用中的作用尚不清楚。 在这里,产生了一组GP70溶的菌株,并进行了分子和表型表征。 结果表明,较高沉默水平的突变体显示,对层粘连蛋白和纤维蛋白原,酶活性的粘附量显着降低,以及细胞壁组成中的缺陷,其中包括降低甘露糖,鼠李糖和蛋白质含量,并伴随着β-1,3 -glucans的增量。 细胞壁n连接的聚糖含量显着降低。 这些菌株在与dectin-1-,TLR2-和TLR4依赖性刺激中与人外周血单核细胞相互作用时会诱导较差的TNFα和IL-6水平。 IL-1β和IL-10水平明显更高,并通过Dectin-1刺激。 在高度GP70溶剂中,人类粒细胞对嗜中性粒细胞细胞外陷阱的刺激增加。具有粘合特性的细胞壁蛋白已被报道,但仅鉴定并表征了其中的少数。其中之一是GP70,这是一种大量的细胞壁蛋白,主要在酵母样细胞的表面上发现。由于该蛋白质在3-羧基,顺式 - 摩酸环化酶的活性中也具有作用,并且其丰度在高毒性菌株中较低,因此其在Sporothrix - 主机相互作用中的作用尚不清楚。在这里,产生了一组GP70溶的菌株,并进行了分子和表型表征。结果表明,较高沉默水平的突变体显示,对层粘连蛋白和纤维蛋白原,酶活性的粘附量显着降低,以及细胞壁组成中的缺陷,其中包括降低甘露糖,鼠李糖和蛋白质含量,并伴随着β-1,3 -glucans的增量。细胞壁n连接的聚糖含量显着降低。这些菌株在与dectin-1-,TLR2-和TLR4依赖性刺激中与人外周血单核细胞相互作用时会诱导较差的TNFα和IL-6水平。IL-1β和IL-10水平明显更高,并通过Dectin-1刺激。在高度GP70溶剂中,人类粒细胞对嗜中性粒细胞细胞外陷阱的刺激增加。此外,这些突变体在无脊椎动物模型Galleria Mellonella中显示出毒力衰减。我们的结果表明,GP70是具有粘附素特性的多功能蛋白,是导致3-羧基-CIS-麦氨酸环酸酯环酸酯酸酯的活性,并且与S. schenckii - 主机相互作用相关。
粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
摘要背景/目的:鲍曼不动杆菌是一种重要的院内病原体。为了更好地了解鲍曼不动杆菌 CsuA/BABCDE 菌毛在毒力中的作用,进行了细菌生物膜形成、粘附和碳水化合物介导的抑制研究。方法:克隆鲍曼不动杆菌 ATCC17978 的 CsuA/BABCDE 菌毛产生操纵子(简称 Csu 菌毛),以分析非生物塑料平板上的生物膜形成、细菌对呼吸道上皮人 A549 细胞的粘附和碳水化合物介导的抑制。用于抑制生物膜形成和对 A549 细胞粘附的碳水化合物包括单糖、吡喃糖苷和甘露糖聚合物。结果:将鲍曼不动杆菌ATCC17978的Csu菌毛克隆表达到不产生菌毛的大肠杆菌JM109中,并将其敲除。在电镜和原子力显微镜下观察大肠杆菌JM109/rCsu菌毛产生克隆上重组Csu(rCsu)菌毛丰富,而Csu敲除的鲍曼不动杆菌ATCC17978
基于CMOS的微电极阵列(CMOS MEAS)包含数千个密集的传感器位点,并且通常用于生物技术应用中,以记录高空间(几乎没有……几十µm)和高时间分辨率的神经元活性和高度分辨率(高达20 kHz带翼)。CMOS MEAs能够以几毫秒数的时间精度和数十微米的空间精度刺激活性[1-3]。未开发的CMOS MEA的应用是它们通过记录和分析由电阻粘附裂隙引起的电压噪声来检测粘附细胞的能力[4-6]。这可能归因于该方法,该方法需要考虑传感器位点的规模,粘附单元的大小,连接电容和相应的采样频率。在这里,我们采用两种不同类型的CMOS MEA和相应的记录系统来评估其可靠的无标签检测能力检测粘附细胞培养的能力(癌细胞系HT-29)。细胞粘附电压噪声通过光谱功率密度(S V)分析。
摘要:采矿和加工磷酸盐是包括阿尔及利亚在内的一些发展中国家的经济基本分支之一。常规的矿石益处方法可能会通过消耗大量的水资源(洗涤和流量),潜在的危险化学物质和热能来损害环境。矿水中含有有毒金属,释放后会干扰环境功能。因此,根据环境需求,应逐渐用安全的生物技术过程逐渐取代常规方法。这项研究旨在研究从Djebel Onk Ore(Algeria)中分离出的天然微生物的生物吸附和粘附能力。所检查的细菌菌株的金属积累效率有所不同。磷酸盐与天然菌株HK4的孵育显着增加了Mg和Cd的恢复(分别为pH 7、8147.00和100.89 µg/g/g -1)。HK4菌株还显示出比枯草芽孢杆菌的参考菌株对矿石颗粒的粘附更好。因此,使用天然HK4菌株时,生物吸附可以更有效,该菌株可以在pH 4-10范围内去除CD和/或MG。此外,关于HK4独特的粘附能力,可以在生物流动方法的设计中考虑菌株,以及开发一种环保的矿石和流动性废物造成的方法。
神经干细胞(NSC)位于定义的细胞微环境中,利基市场,该环境支持新生神经元的产生和整合。围绕NSC围绕NSC及其与神经发生的功能相关的机制尚待理解。在果蝇幼虫大脑中,皮层胶质(CG)包含膜腔中的个体NSC谱系,将干细胞种群和新生神经元组织成刻板的结构。我们首先发现CG围绕谱系与谱系相关的细胞不论其身份如何,表明谱系信息构建了CG架构。然后,我们发现使用保守的配合物具有时间控制的差异粘附机制支持了NSC谱系的单个包围。通过同粒神经相互作用通过同一谱系的细胞之间的强烈结合,而通过Neurexin-IV和NSC谱系之间存在较弱的相互作用,则具有强烈的结合。神经胶质的丧失导致NSC谱系结合在一起,并在变化的CG网络中,而神经毒素-IV/包装器的丢失会生成更大但定义的CG腔室,将几个谱系分组在一起。在这些条件下,新生神经元的轴突投射也发生了变化。此外,我们将这两种粘附复合物的丧失与最终成年人的运动多动症联系起来。总的来说,我们的发现确定了在单个干细胞的规模上建立神经源性生殖位的粘连带,并提供了在发展过程中成年成人行为的概念证明。
由于细胞粘附基因中的遗传变异,表皮溶解Bullosa(EB)的标志是上皮脆弱的附着。我们描述了16例在1992年至2023年之间与英国国家EB部门有关的第三级儿科医院的EB患者。患者患有喉气管狭窄的高度发病率和死亡率。变体。LAMA3编码层粘连蛋白-332的亚基,杂素外细胞外基质蛋白复合物,并通过气道上皮上皮层状系统表达。WEINEVETIGETIGETEDTHEBENEDTHEBENEDTHEBENIFETTHEBENEDTHEBENIFETHEBENIFETHEBEREDEBENIFETHEBENIFETHEBENIL-EB型野生型Lama 3在原始EB患者基底层的基层培养基中表达。eB基础细胞表现出对细胞培养底物的粘附较弱,但否则可以将其相似地扩展到非EB基础细胞。在EB基细胞中LAMA3A的体外慢病毒过表达使它们能够在空气界面培养物中进行区分,从而产生具有正常纤毛节拍频率的CILIA。 此外,转导将细胞粘附恢复到与非EB供体培养物相当的水平。 这些数据提供了组合细胞和基因治疗方法的概念验证,以治疗受喇嘛3的EB中的气道疾病。在EB基细胞中LAMA3A的体外慢病毒过表达使它们能够在空气界面培养物中进行区分,从而产生具有正常纤毛节拍频率的CILIA。此外,转导将细胞粘附恢复到与非EB供体培养物相当的水平。这些数据提供了组合细胞和基因治疗方法的概念验证,以治疗受喇嘛3的EB中的气道疾病。
摘要 真菌粘附素 (Als) 或絮凝素是一类细胞表面蛋白,可介导对各种生物和非生物表面的粘附。最初在致病性白色念珠菌中发现的 Als 蛋白的一个显著特征是形成功能性淀粉样蛋白,介导顺式相互作用,从而形成粘附素纳米结构域,以及对立细胞的淀粉样蛋白序列之间的反式相互作用。在本报告中,我们表明,酿酒酵母中 FLO11 编码的絮凝素的行为类似于白色念珠菌中的粘附素。为此,我们表明,在外部物理力作用下形成纳米结构域需要 Flo11 蛋白中一定数量的淀粉样蛋白形成序列。然后,我们利用基因组编辑方法,构建了在内源性 FLO11 启动子下表达 Flo11 蛋白变体的菌株,结果证明,淀粉样蛋白形成序列的缺失会大大降低细胞间相互作用,但对塑料粘附或琼脂中的侵袭性生长没有影响,这两种表型都依赖于 Flo11p 的 N 端和 C 端。最后,我们表明 Flo11 的位置不会因淀粉样蛋白形成序列的缺失或蛋白质 N 端或 C 端的去除而改变。