1新加坡南洋技术大学机械和航空工程学院,新加坡639798; 2江坦大学材料科学与工程学院,中国411105; 3中国杭州大学工程机械师系,中国; 4材料科学与工程学院,新加坡Nanyang Technological University,新加坡639798; 5高性能计算研究所,新加坡新加坡138632,新加坡; 6 Mechano-X Institute,Applied Mechanics Laboratory,工程机械学系,北京大学,北京100084和7化学学院,化学工程与生物技术学院,Nanyang Technologicy University,新加坡639798,新加坡,新加坡
软机器人技术应用于临床的关键要求之一是机器人在人体内能够得到稳健的控制。这就要求机器人能够克服自身的重力、浮力和摩擦力,在内脏器官表面(可能是倾斜的、垂直的或密闭空间内的倒置表面)可靠地移动。针对上述要求,已经研究了几种提高粘附力的方法。受自然界生物的启发,人们研究并证实特殊结构和材料能够提高在干燥或潮湿条件下表面的粘附力。[20–22] 例如,受壁虎趾启发而设计的定向蘑菇尖微纤维已被证实在光滑干燥的表面上具有很强的粘附力和摩擦力。 [23] 据报道,受蜘蛛丝启发的复合材料在 4 至 −196°C 的湿冷基底上具有可靠的粘附力。 [24] 为了实现软机器人的可控粘附和分离,有人提出了一种受章鱼启发的水凝胶粘合剂,以增强机器人在体外生物组织上操作的稳定性。 [25] 此外,磁场梯度产生的力已被用来产生束缚力,以粘附软机器人。 [26]
摘要。表面能量表征对于设计可靠的电子设备的制造过程很重要。表面能量受表面功能和形态等各种因素的影响。由于高表面与体积比率,纳米级的表面能与散装的表面能有所不同。然而,由于表征有限的表征量有限,因此无法将表面能(如无梗液或刷毛方法)表征表面表征的常规方法。最近,已经提出了使用原子力显微镜(AFM)在纳米级上进行表面能表征,并提出了具有峰值力量定量纳米力学映射(PF-QNM)成像模式的表面能。纳米级AFM尖端测量纳米级的粘附力,该粘附力通过预校准的曲线转化为表面能。先前已经报道了使用AFM与PF-QNM方法对纳米级金属样品的成功表面能表征。这项微型审查讨论了使用PF-QNM方法使用AFM在纳米级表面表征的最新进展。引入了PF-QNM模式的基本原理,并总结了表面能表征的结果。因此,讨论了纳米级表面能量表征的未来研究方向。
抽象目标本研究的目的是确定Tenascin-C(TNC)在肠新骨形成中的作用,并探索潜在的分子机制。方法是从手术期间从强硬性脊柱炎(AS)的患者那里获得的韧带组织样品。建立了胶原蛋白抗体诱导的关节炎和DBA/1模型,以观察诱发的新骨形成。TNC表达。在动物模型中进行了TNC的全身抑制作用或遗传消融。通过原子力显微镜测量细胞外基质(ECM)的机械性能。通过RNA测序分析TNC的下游途径,并在体外和体内通过药理学调节确认。通过单细胞RNA测序(SCRNA-SEQ)分析TNC的细胞来源,并通过免疫荧光染色确认。结果在韧带和动物模型患者的诱发组织中异常上调TNC。TNC抑制作用显着抑制了诱发新骨形成。 功能分析表明,TNC通过增强内软骨骨化过程中的软骨分化来促进新的骨形成。 机械上,TNC抑制了ECM的粘附力,从而激活了下游河马/与YES相关的蛋白质信号传导,进而增加了软骨基因的表达。 SCRNA-SEQ和免疫荧光染色进一步表明,TNC主要由成纤维细胞特异性蛋白-1(FSP1)+成纤维细胞分泌。TNC抑制作用显着抑制了诱发新骨形成。功能分析表明,TNC通过增强内软骨骨化过程中的软骨分化来促进新的骨形成。机械上,TNC抑制了ECM的粘附力,从而激活了下游河马/与YES相关的蛋白质信号传导,进而增加了软骨基因的表达。SCRNA-SEQ和免疫荧光染色进一步表明,TNC主要由成纤维细胞特异性蛋白-1(FSP1)+成纤维细胞分泌。结论炎症引起的FSP1+成纤维细胞对TNC的异常表达,通过抑制ECM粘附力并激活HIPPO信号传导来促进肠新骨形成。
抽象的牙菌斑是一个薄而柔软的层,其中包含细菌聚集并粘在牙齿的表面上。此牙齿斑块是无色的,因此眼睛看不到。因此,要看到牙齿,需要一个斑块染色剂。mangosteen Peel含有牙菌斑染料,形式为花色蛋白,产生紫色的红色或蓝色。除此之外,花青素是一种可溶于水的活性物质,可以与斑块中的糖蛋白结合,从而可以与斑块形成键。这项研究的目的是确定花青素中的花青素含量以及由芒果果皮提取物制成的粘膜粘附凝胶配方,该凝胶提取物是最佳的,作为牙皮斑块着色剂。该研究方法是通过测试花色苷水平的实验实验室研究,使粘膜粘附性凝胶配方具有10%,25%,50%芒果果皮提取物的基本成分,然后通过有机摄影测试,味觉测试和粘附测试通过有机摄影测试和粘附测试来测试凝胶的质量。研究结果表明,粘附性凝胶配方中的芒果果皮提取物的浓度影响了凝胶制剂的质量,其中Mangosteen Peel提取物的浓度为10%,25%和50%,能够提高制剂的颜色强度,并提高凝胶制剂的粘附力,但可以降低凝胶的扩散能力。使用芒孔果皮提取物作为公开溶液的最佳浓度是25%的浓度,因为它具有良好的粘附力和散布功率和颜色强度,与牙齿形成对比。
摘要:共晶镓-铟 (EGaIn) 因其在室温下可塑性强、导电性和机械稳定性,越来越多地被用作分子电子学和可穿戴医疗设备中的界面导体材料。尽管这种用途日益广泛,但控制 EGaIn 与周围物体相互作用的机械和物理机制(主要受表面张力和界面粘附力调节)仍不太清楚。在这里,我们在原始 EGaIn/GaO x 表面上使用深度感应纳米压痕 (DSN),揭示了 EGaIn/基底界面能的变化如何调节粘附和接触机械行为,特别是具有不同毛细管几何形状和压力的 EGaIn 毛细管桥的演变。通过使 EGaIn 处于不同的化学环境中,并用化学性质不同的自组装单层 (SAM) 对尖端进行功能化,可以改变界面能,我们发现 EGaIn 和固体基底之间的粘附力可以提高多达 2 个数量级,从而使毛细管桥的伸长率增加约 60 倍。我们的数据表明,通过部署具有不同端基的 SAM 的分子结,电荷传输速率趋势、单层的电阻以及 EGaIn 和单层之间的接触相互作用(从电气特性来看)也受界面能控制。这项研究为了解界面能对 EGaIn 毛细管桥几何特性的作用提供了关键的理解,为以受控方式制造 EGaIn 结提供了见解。关键词:EGaIn、毛细管桥、深度感应纳米压痕、分子结、自组装单分子膜■ 简介
通过TMA PPM/°C的线性CTE 125说明DOW微电子胶粘剂旨在满足微观和光电包装行业的关键标准,包括高纯度,耐水性以及热和电气稳定性。产品提供了出色的应力缓解和高温稳定性,对各种底物材料和组件具有出色的无原粘附力。这些产品非常适合需要低模量材料,无铅焊料回流温度(260°C)或其他高可靠性应用。DOW微电子粘合剂作为方便的一部分材料提供,其特异性配方用于电导率,电绝缘或导热率,所有这些都通过无副产物而通过热量来固化。准备表面
微米和纳米尺度的形貌对表面功能有重大影响。自然界的进化发展出了优化的表面纹理,这些纹理对润湿性、摩擦力、粘附力和视觉外观具有先进的影响,以确保生存。[1,2] 尤其是,许多动物和植物的明亮和闪亮的颜色往往源于光从其表面复杂的周期性结构中衍射。[3] 理解和控制结构色的表面几何形状是材料科学、化学和物理学领域许多研究工作的主题,旨在通过改进衍射光栅的设计和制造,制造具有先进光学和色度功能的人造光调制装置 [4–8]。[9,10]
在本文中,我们使用一种新型的低D K /D K /D F M-PPE(改良的聚苯苯基醚)堆积的干燥胶片材料以及5G /毫米波频段中传输特性的评估来报告RF滤清器底物的制造。用堆积层的过滤器底物是由SAP(半添加过程)制造的,它确保了铜和绝缘层之间的高粘附力。制造过滤器的传输特性评估表明,在28 GHz和39 GHz时,传输损失大大降低至1.0 dB。1。はじめに