AR Androgen receptor ASD Autism spectrum disorder ATN1 Atrophin 1 ATP7B ATPase copper transporting beta ATXN1 Ataxin 1 ATXN10 Ataxin 10 ATXN2 Ataxin 2 ATXN3 Ataxin 3 ATXN7 Ataxin 7 ATXN8OS Ataxin 8 opposite strand lncRNA AXL AXL receptor tyrosine kinase BMPR1A Bone morphogenetic protein receptor type 1A BRCA1 BRCA1 DNA repair associated BRCA2 BRCA2 DNA repair associated BTD Biotinidase C9orf72 C9orf72-SMCR8 complex subunit CA Congenital anomalies CACNA1A Calcium voltage-gated channel subunit alpha1 A CACNA1S Calcium voltage-gated channel subunit alpha1 S CCDC141 Coiled-coil domain containing 141 CCDC88C围绕包含88C CDON细胞粘附的盘绕螺旋域;致癌基因调节的CES临床外显子组测序CFES临床聚焦的外显子组测序CGC ABGC董事会认证的遗传顾问CHD7 CHD7染色体蛋白酶DNA结合蛋白7 CLIA '88 CLIA '88临床实验室改善改善1988年CMA染色体染色体的临床实验室改进预定量 binding protein COL3A1 Collagen type III alpha 1 chain CSTB Cystatin B DCAF17 DDB1 and CUL4 associated factor 17 DCC DCC netrin 1 receptor DD Developmental delay DIP2B Disco interacting protein 2 homolog B DMPK DM1 protein kinase DMXL2 Dmx like 2 DNA Deoxyribonucleic acid DSC2 Desmocollin 2 DSG2 Desmoglein 2
基于这些特性,金属和金属合金被用作承重植入物。其中,钴铬合金、不锈钢、钛和钛合金被广泛用于多种生物医学应用。特别是,钛及其合金的弹性模量接近骨骼,密度低于钴铬合金和不锈钢。[2,3] 此外,与纯钛相比,钛合金具有更高的机械性能,使其特别适合用作骨科和创伤植入物。然而,钛和钛合金被认为是生物惰性材料,即它们不会与人体周围组织发生化学或生物反应。[4] 此外,涉及钛合金(即 Ti6Al4V 合金)的腐蚀现象会导致释放对人体有害的 Al 和 V 合金。为了促进植入物与现有人体骨组织的骨整合,从而优化装置的整合,在植入物表面生长涂层可能是一种合适的方法。尤其对于钛和钛合金,火花阳极氧化是一种合适的技术,可在基体上生长出牢固粘附的多孔陶瓷涂层,最大限度地减少可能导致骨溶解的剥落现象。在此背景下,已研究了多种策略来增强钛合金的生物活性,从而增强其骨整合。[5–7] 文献中有充分的证据表明,羟基磷灰石 (HA,Ca 10 (PO 4 ) 6 (OH) 2 ) 的存在可以增强外来生物材料的骨整合,因为它与硬组织和软组织具有很高的生物相容性。[8] 因此,诱导 HA 的结合或生长已被证明是提高材料生物活性的一种好策略。例如,这可以通过电化学转化涂层工艺(如火花阳极氧化)通过精确调整操作条件(形成电压、电解质浴成分等)来实现。 [3,9,10] 此外,Ti6Al4V 合金表面生长一层厚的阳极氧化层可以提高其耐腐蚀性能
在本研究中,我们提出了一种多功能的表面工程策略,即将贻贝粘附肽模拟和生物正交点击化学相结合。本研究的主要思想源自一种新型受贻贝启发的肽模拟物,其具有可生物点击的叠氮基(即多巴胺 4-叠氮化物)。与贻贝足蛋白的粘附机制(即共价/非共价共介导的表面粘附)类似,受生物启发和可生物点击的肽模拟物多巴胺 4-叠氮化物能够与多种材料稳定结合,例如金属、无机和有机聚合物基材。除了材料通用性之外,多巴胺 4-叠氮化物的叠氮残基还能够通过第二步中的生物正交点击反应与二苄基环辛炔 (DBCO-) 修饰的生物活性配体进行特定结合。为了证明该策略适用于多样化的生物功能化,我们在不同的基底上将几种典型的生物活性分子与 DBCO 功能化进行生物正交结合,以制造满足生物医学植入物基本要求的功能表面。例如,通过分别嫁接防污聚合物、抗菌肽和 NO 生成催化剂,可以轻松将抗生物污损、抗菌和抗血栓形成特性应用于相关的生物材料表面。总体而言,这种新型表面生物工程策略已显示出对基底材料类型和预期生物功能的广泛适用性。可以想象,生物正交化学的“清洁”分子修饰和受贻贝启发的表面粘附的普遍性可以协同为各种生物医学材料提供一种多功能的表面生物工程策略。
摘要:本文综述了有关聚合物在人行道和岩土工程中使用土壤稳定的研究。首先,讨论了影响广泛使用聚合物类别的有效性的特性,包括地球聚合物,生物聚合物和合成有机聚合物。这些包括地球聚合物的前体和活化剂,分子量,粒径,电荷,构象,溶解性,粘度,pH和有机聚合物的水分行为的类型和比率。接下来,本文审查了使用各种聚合物类别的土壤稳定的机制。有机聚合物 - 粘合相互作用的关键机制是静电力和熵的增加,这取决于聚合物是阳离子,中性还是阴离子的不同。另一方面,聚合物与主要由沙子组成的粗粒土壤之间的相互作用主要归因于三种类型的结构变化:覆盖砂颗粒的薄膜,连接了无接触的相邻颗粒的聚合物扎带的形成以及颗粒之间粘附的发展。地球聚合物稳定的机制是通过形成钠和/或钙铝硅酸盐凝胶的形成,该氧化物结合周围的土壤颗粒并将其变成更密集,更牢固的基质。讨论了使用聚合物稳定后土壤类型的工程特性,包括强度提高,渗透率降低,膨胀和收缩抑制以及耐用性和稳定性增强。最后,本文强调了更广泛使用土壤聚合物稳定的挑战,包括有限的评估标准,生命周期成本考虑和水分敏感性。为此,建议对土壤稳定中广泛使用聚合物的一些未来研究方向,包括建立标准测试方案的需要,评估聚合物稳定土壤的原位特性,解决耐用性问题的解决方案以及进一步研究稳定机制的进一步检查。
摘要 溶质载体 (SLC) 膜转运蛋白包含一个易于处理但尚未得到充分研究的靶标家族,可用于潜在的药物干预。最近对人类遗传与疾病的关联分析,结合诸如寻找合成致死性等介入方法,揭示了各种 SLC 家族成员与未满足治疗需求的疾病之间的新联系。荧光成像板读取器 (FLIPRTM,Molecular Devices) 与响应细胞膜电位 (MP) 的荧光染料相结合,为进行 SLC 指导的药物发现提供了一个多功能平台。这是因为许多 SLC 运输带电溶质或溶质与离子结合,因此易位与 MP 的变化有关。我们展示了两次完整的高通量筛选 (HTS) 活动的结果,以说明该平台的应用。SLC 通过杆状病毒介导的转导在粘附的 U2OS 宿主细胞中表达。将染料加载到 1536 孔高密度微量滴定板中的细胞,与测试药物预孵育,并用底物(氨基酸或糖)进行攻击。通过与对未转化宿主细胞的 KCl 诱发的 MP 反应的影响进行比较,筛选出具有非 SLC 特异性作用的药物。从大约 200 万种化合物的完整筛选集合中,对 500-2000 种推定的抑制剂进行了研究,以确定对密切相关转运蛋白的特异性(也使用 FLIPR),并通过非 FLIPR 方法证实真实的 SLC 抑制(即“正交性”)。HTS 活动在有吸引力的化学空间中提供了新的化学起点,从而能够探索结构-活性关系 (SAR),并有助于在动物模型中确认每种情况下的治疗假设:药物介导的 SLC 抑制将诱导对疾病有益的生理效应。
众所周知的短语“您可以从石头上获取血”用于描述一项任务,无论施加了多少力量或努力,几乎都是不可能的。这句话非常适合人类对火星的第一个船员任务,这可能是有史以来最困难和技术上具有挑战性的人类努力。与向火星表面交付有效载荷相关的高成本和显着的时间延迟意味着对原位资源的剥削(包括无机岩石和尘埃(Regolith),水沉积和大气气体)将是机组人员对红色星球的任何船员任务的重要组成部分。然而,通过定义的任何船员任务也可以使用一种重要的,但长期被忽视的自然资源来源,这些资源也将被定义:船员本身。在这项工作中,我们探索了人血清白蛋白(HSA)的使用(HSA)(一种从血浆获得的常见蛋白质)作为模拟月球和火星岩石的粘合剂,以生产所谓的“外星Regolith Biocomposites(ERB)”。 '本质上,可以在体内生产的宇航员生产的HSA可以半连续地提取,并与月球或火星岩层结合使用,以“从血液中获取石头”,以重塑谚语。采用简单的制造策略,产生了基于HSA的ERB,并显示出高达25.0 MPa的抗压强度。进行比较,标准混凝土通常具有20至32 MPa之间的抗压强度。此外,我们证明了HSA-ERB具有3D打印的潜力,为使用人类衍生的原料开辟了一个有趣的潜在潜在途径,以实现外星的建设。在某些情况下,尿素的掺入可以从尿液,汗水或眼泪中提取 - 在某些情况下可以将抗压强度进一步提高300%以上,其表现最佳的配方的平均抗压强度为39.7 MPa。研究了粘附的机制,并归因于脱水引起的蛋白质二级结构重组为密集的氢键,超分子β-链网络 - 类似于蜘蛛丝的凝聚力机制。进行比较,还研究了合成的蜘蛛丝和牛血清白蛋白(BSA)为Regolith Binders,也可以在火星菌落上生产具有生物制造技术未来进步的火星殖民地。
摘要:对齐的纳米纤维(例如碳纳米管(CNT))的出色固有特性,以及它们易于形成成多功能的3D体系结构的能力,激励它们用于各种商业应用的使用,例如电池,用于环境监测的化学传感器以及能源监测和节能式载体。在控制对生长底物的纳米纤维粘附对于批量制造和设备性能是必不可少的,但迄今为止的实验方法和模型尚未解决CNT阵列 - 底物 - 底物粘附强度在热处理条件下。在这项工作中,可轻松的“一锅”热后生成处理(在温度下t p = 700 - 950°C)用于研究CNT-底物 - 底物提取强度,用于毫米高的对准CNT阵列。CNT阵列通过拉伸测试从平坦生长基板(Fe /Al 2 O 3 /SiO 2 /Si Wafers)中取出,表明该阵列逐渐失败,类似于脆性微生物束的响应。在三个方案中,引进强度与T P非单调地演变,首先由于在CNT-catalyst界面上对无序碳的石墨化而首先增加10次,直至t p = 800°C,然后由于Fe催化为catly catalyst扩散到950°C而降低到弱界面,从而降低到弱界面,并降低了sudtration substration substration substrate and 2 o cystration and 2 o 3 cystration and 2 o 3 cystratization。失败发生在750°C以下的CNT-催化剂界面处发生,并且CNT在较高的T P加工后拉出期间自身破裂,在基板上留下了残留的CNT。形态学和化学分析表明,在所有制度中,Fe催化剂在撤离后仍保留在底物上。这项工作提供了对负责纳米纤维 - 底物粘附的界面相互作用的新见解,并允许调谐增加或降低应用程序的阵列强度,例如高级传感器,能量设备和纳米机电系统(NEMS)。关键字:碳纳米管,粘附,热处理,机械性能,界面行为,扫描传输电子显微镜■简介
与基于合成的不可降解纤维相比,菠萝叶纤维(PALF)的聚合物复合材料的抽象开发引起了人们的兴趣。然而,亲水性PALF与疏水性的热固体和热塑性聚合物的界面粘合不良。此外,PLAF的这种亲水性质会导致更多的水分吸收率,从而导致整体性质降解。可以通过修改纤维表面来解决此问题。因此,对纤维表面修饰对各种特性的影响以及与聚合物的粘附的影响是改善PALF及其复合材料关键词的关键:菠萝叶纤维纤维土壤覆盖物 - 菠萝叶子机制的组成部分绷带 - 适应性和bordage todive toperage toseal to norder seaste kite intery seaste sisea intery sisea intery sisea interae sisea interae sisea interae sisea interaipe nestea intery sisea interaipe nestea intery sisea interaipe nestea是一个巨大的销售。菠萝叶纤维的提取正在为商业和小型生产商开辟一个市场。正在研究许多其他可能性,例如可能来自菠萝的不同纤维。[1]菠萝是一种未鉴定的果实,是热带地区原生的。可用于市场机会的新兴行业是有价值的饮食纤维。水果的纤维是多种食物的有益补充。可见在其他区域中使用的水果的微晶纤维素。泰国,菲律宾,哥斯达黎加,中国和印度是世界上增长最快的国家,以及巴西[2]。*信函的作者纤维繁荣,除了其在东北和阿萨姆地区的强大基础。可用于生产力量表的菠萝农作物种植的最大区域是阿萨姆邦。印度在这种作物的产量中领先世界,这为纤维生产带来了更多的机会。近90-95%的产品是有机的,该地区产生了全国菠萝的40%以上[3]。创建纤维和纺织品,重点是绿色环境,这是消费和生活水平的增加。从利用叶子和茎的创意项目中获得知识,最近引发了对可持续发展的关注
这项工作涉及过滤媒体上的微生物增长,并着重于微生物群落扩散到过滤器培养基上的能力。研究了两种微生物类型:来自废水处理厂(SM)活性污泥的微生物(SM)和甲苯特定联盟(TSC)。该研究所考虑的过滤器培养基包含活性碳纤维(ACF),挥发性有机化合物(VOC),颗粒治疗目的,活化的碳纤维感觉(ACFF)以及活化的碳和纤维素纤维感觉(AC 2 F 2)。使用静态生长程序在100%的相对湿度下使用静态生长程序,将人工污染的过滤器提交给微生物定植。根据过滤器蛋白质含量测定法,已经使用实验室中开发的方法评估了每克过滤器的微生物的最终浓度。测量插入和过滤器的平均表面电荷以评估微生物对污染的影响。烟灰颗粒对TSC增殖的影响,然后研究AC 2 F 2滤波器。zeta测量能够评估微生物在过滤纤维上粘附的烟灰的刺激。微生物污染对过滤器通透性和下游颗粒的后果已在填充装置中评估。结果表明,AC 2 F 2与微生物定殖的更好分析。但是,SM在ACFF上比TSC有更多的困难,而SM与TSC相比,SM定居更容易AC 2 F 2。电荷表面测定已定义了TSC和AC 2 F 2的最佳静电兼容性,而SM和ACFF的最小静电兼容性。当在引入AC 2 F 2之前将烟灰添加到TSC上时,观察到高污染形状,而仅发生烟灰的情况下只有一小段污染形状。Zeta电位措施显示出有利的电荷条件,可在AC 2 F 2纤维上粘附于烟灰颗粒上的TSC。因此,烟灰可能已经在微生物广告中扮演了界面角色。这意味着颗粒之间的静电兼容性是评估微生物粘附到过滤器上的良好方法,但无法解释微生物增殖的整个机制。其他参数,例如营养
1毒性研究2。代谢性疾病3。Alzheimer/神经系统疾病2。 div>Jagannath Sahoo博士新颖的药物输送系统,溶解度增强,配方开发,纳米颗粒,透皮药物输送系统,透射药物输送系统,鼻内药物输送系统,稳定性研究。3。Yogesh Kulkarni博士的草药药理学,重点是糖尿病,糖尿病并发症和神经退行性疾病,天然产物的毒性,草药药物的毒性,草药的标准化4.Ashwini Deshpande博士剂型设计和新型药物输送系统。5。Shyam Pancholi博士的分析分析,降解分析,杂质分析,QBD方法,化妆品,营养和草药配方设计,溶解度增强,药物靶向和调节性方面优质药物,设备,诊断和生物学的方面。6。Suvakanta Dash博士生物粘附的新型药物输送,生物增强研究,新型Phtopharmaceuticals和刺激敏感药物输送系统的递送。7。Sateesh B.糖尿病博士,炎症和毒性研究。8。Vaishali Londhe博士新颖的药物输送系统,例如纳米颗粒,脂质体,微针,溶解度增强方法,例如固体分散剂,包含络合,SMEDDS,SMEDDS,COCRYSTALS,改善生物利用度,改性的口服递送,例如ODT,ODT,口服果冻>使用实验设计(DOE),透皮药物递送,分析/生物分析方法的开发和验证,杂质分析,草药配方发育。9。10。11。Dr. Pravin Shende Biosensors, nanosponges, nanobubbles, nanoflowers, microneedles, Resealed erythrocytes, Biocarrier Drug Delivery, DoE-based formulations, Liposomes, Dendrimers, Solid-lipid Nanoparticles, Polymeric Nanoparticles, Carbon NP, magnetic NP, nanocrystals, Targeted, Transdermal,颊,肺和脉动药物输送系统,用于改善溶解度和生物利用度的融合络合,常规剂型的预构和稳定性研究。Khushwant Yadav纳米医学博士,药物输送,抗癌药物的制剂开发,青光眼的新型递送系统,神经退行性疾病,微粒,基于聚合物的动力学。Sanjay Sharma博士分析和生物酰基方法的开发和验证,杂质概况,天然产品,药物调节案件(DRA),知识产权权利(IPR),失败调查和合规性,包括药品CAPA。